European Food Research and Technology

, Volume 222, Issue 3–4, pp 242–249 | Cite as

Protein-backbone-modifications: Formation of imidazolines

  • Thomas Paulus
  • Christoph Riemer
  • Annette G. Beck-Sickinger
  • Thomas Henle
  • Henning Klostermeyer
Original Paper


The formation of imidazolines within the backbone during heating of peptides and proteins was studied. In model experiments, the generation of 2-methyl-4-carboxy-imidazoline after incubation of N α -acetyl-β-aminoalanine was demonstrated by cation-exchange chromatography and NMR-studies. At 60 °C the highest concentrations of this imidazoline were measured at pH 9. With increasing temperature the pH-optimum of the imidazoline formation shifted to lower pH levels.

The reaction of N α -acetyl-dehydroalanine-methylester with ammonia generated β-aminoalaninoalanine, which was identified in comparison with synthesized references by HMQC-and1H-NMR-spectroscopy. β-Aminoalaninoalanine, a crosslink-product homologous to lysinoalanine, which reacts easily with the corresponding imidazoline. Thus, the formation of imidazolines in peptide backbones containing β-aminoalanine was shown unequivocally.

Further studies were conducted with peptides, synthesized according to the 10–28 sequence of bovine β-caseine with β-aminoalanine respectively β-alanine substituted for a phosphoserine residue. After incubation, the loss of one molecule of water from the β-aminoalanine containing peptide, but not from the native peptide or the peptide containing β-alanine, was detected by HPLC and MS. As a consequence, the loss of water was explained by cyclization and the formation of an imidazoline.

These investigations indicate that the formation of imidazolines—besides the formation of thiazolines—takes place during heating of peptides and proteins. Heterocyclic backbone-modifications are a form of posttranslational modifications, which may play a role during the processing of proteins and subsequent formation of unexpected compounds.

Key words

Imidazolines 2-methyl-4-carboxy-imidazoline β-aminoalaninoalanine β-aminoalanine protein-backbone modification 


  1. 1.
    Tareke E, Rydberg P, Karsson P, Eriksson S,Törnqvist M (2002) J Agr Food Chem 50:4998–5006CrossRefGoogle Scholar
  2. 2.
    Lübke K, Schröder E, Kloss G (1975) Chemie und Biochemie der Aminosäuren, Peptide und Proteine I. Thieme, Stuttgart 65–72Google Scholar
  3. 3.
    Gante J (1994) Angew. Chem. 106:1780–180CrossRefGoogle Scholar
  4. 4.
    Cody CW, Prasher DC, Westler WM, Prendergast FG, Ward WW (1993) Biochemistry 32:1212–1218CrossRefGoogle Scholar
  5. 5.
    Heim R, Prasher DC, Tsien RY (1994) Proc Natl Acad Sci USA 91:12501–12504CrossRefGoogle Scholar
  6. 6.
    Abderhalden E, Brockmann H (1930) Biochem Z 225:386–408Google Scholar
  7. 7.
    Zahn H (1961) Chimia 15:378–394Google Scholar
  8. 8.
    Greenstein JP, Winitz M (1961) Chemistry of the amino acids, Wiley, New York II:1604–1606Google Scholar
  9. 9.
    Paulus T, Henle T, Klostermeyer H (1997) Z Lebensm Unters Forsch A 204:247–251CrossRefGoogle Scholar
  10. 10.
    Wieland T, Bokelmann E, Bauer L, Lang HU, Lau H (1953) Liebigs Ann Chem 583:129–149CrossRefGoogle Scholar
  11. 11.
    Wätzig H, Dette C, Aigner A, Wilschowitz L (1994) Pharmazie 49:249–252Google Scholar
  12. 12.
    Aigner A, Wahl S, Wilschowitz L, Wätzig H (1994) Pharm Ind 56:189–191Google Scholar
  13. 13.
    Poduška K, Katruhka GS, Silaev AB, Rudinger J (1965) Collect czech chem Commun 30:2410–2433Google Scholar
  14. 14.
    Waki M, Kitajima Y, Izumiya N (1981) Synthesis 266–268Google Scholar
  15. 15.
    Jones RCF, Ward GJ (1988) Tetrahedron Lett 29:3853–3856CrossRefGoogle Scholar
  16. 16.
    Miller MJ (1980) J Org Chem 45:3131–3132CrossRefGoogle Scholar
  17. 17.
    Rist B, Enzeroth M, Beck–Sickinger A G (1998) J Med Chem 41:117–123CrossRefGoogle Scholar
  18. 18.
    Henle T, Walter H, Krause I, Klostermeyer H (1991) Int Dairy J 1:125–135CrossRefGoogle Scholar
  19. 19.
    Paulus T (1998) Studien zur Bildung heterocyclischer Backbone–Modifikationen in Proteinen durch technologische Prozesse. Herbert Utz Verlag, München: 11–27, 146–148Google Scholar
  20. 20.
    Asquith RS, García-Domínguez JJ (1968) JSoc Dyers Col 84:155–158Google Scholar
  21. 21.
    Nashef AS, Osuga DT, Lee HS, Ahmed AI, Whitaker JR, Feeney RE (1977) J Agric Food Chem 25:245–251CrossRefGoogle Scholar
  22. 22.
    Fritsch RJ, Klostermeyer H (1981) Z Lebensm Unters Forsch 173:101–106CrossRefGoogle Scholar
  23. 23.
    Mukai K, Shimizu Y, Murata R, Matoba T, Hasegawa K (1986) Nippon Nogeikagaku Kaishi 60:1009–1015Google Scholar
  24. 24.
    Asquith RS, Otterburn MS (1977) Adv Exp Med Biol 86B:93–121Google Scholar
  25. 25.
    Friedman M (1999) J Agr. Food Chem 47:1295–1319CrossRefGoogle Scholar
  26. 26.
    García-Domínguez JJ, Míro P, Reig F, Anguera S (1971) Appl. Polymer Symp. 18:269–275Google Scholar
  27. 27.
    Walter AW (1995) Protein-Quervernetzungsreaktionen: Identifizierung individueller Reaktionsprodukte und Untersuchungen zum Einfluß reduzierender Kohlenhydrate. Shaker, Aachen: 45–46Google Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • Thomas Paulus
    • 1
  • Christoph Riemer
    • 3
  • Annette G. Beck-Sickinger
    • 4
  • Thomas Henle
    • 2
  • Henning Klostermeyer
    • 1
  1. 1.Lehrstuhl für Chemie der BiopolymereTechnische Universität MünchenFreisingGermany
  2. 2.Institut für LebensmittelchemieTechnische Universität DresdenDresdenGermany
  3. 3.Lehrstuhl für Organische Chemie IITechnische Universität MünchenGarchingGermany
  4. 4.Institut für BiochemieUniversität LeipzigLeipzigGermany

Personalised recommendations