European Food Research and Technology

, Volume 222, Issue 3–4, pp 368–375 | Cite as

Effect of roasting on the radical scavenging activity of cocoa beans

  • Carmelina Summa
  • Fernando Cordeiro Raposo
  • Josephine McCourt
  • Roberto Lo Scalzo
  • Karl-Heinz Wagner
  • Ibrahim Elmadfa
  • Elke Anklam
Original Paper

Abstract

The free-radical scavenging activity of cocoa samples subjected to different roasting treatments has been determined. The samples (raw, pre-roasted and roasted) were separated into four molecular weight fractions per sample (>30, 30–10, 10–5, and <5 kDa). The free-radical scavenging activity was determined with the DPPH (1,1-dipheny-2-picrylhydrazyl), and ABTS•+ [2,2’-azinobis (3-ethylbenzothiazoline-6-sulfonic acid)] free-radical scavenging assays for all samples. Both tests were compared in terms of sensitivity and measurement precision, at different reaction times. Comparing the results from each test, the free-radical scavenging activity trends were similar for each fraction but with notable differences in the sensitivity of the assays. Analysis of the concentration of reducing substances, such as water soluble phenolics, melanoidins, carbohydrates, etc, in these fractions by the photometric Folin–Ciocalteu assay, showed a similar pattern to the free-radical scavenging activity trend. Moreover, this comparison showed that there were significantly (P < 0.05) more reducing substances and free-radical scavenging activity in the 10–5 kDa roasted cocoa bean fraction.

Keywords

Cocoa ABTS•+ DPPH Roasting effect Free-radical scavenging activity 

References

  1. 1.
    Dillinger TL, Barriga P, Escarcega S (2000) J Nutr 130(suppl):2057S–2072SGoogle Scholar
  2. 2.
    Wollgast J, Anklam E (2000) Food Res Int 33:449–459CrossRefGoogle Scholar
  3. 3.
    Wollgast J, Pallaroni L, Agazzi ME, Anklam E (2001) J Chromatogr A 926:211–220CrossRefGoogle Scholar
  4. 4.
    Wollgast J, Anklam E (2000) Food Res Int 33:423–447CrossRefGoogle Scholar
  5. 5.
    Eichner D (2000) Gordian 100:57–59Google Scholar
  6. 6.
    Singhara A, Macku C, Shibamoto T (1998) In functional food for desease prevention II; Medicinal Plants and Other Foods ACS Symposium Series 701 American Chemical Society: Washington, DC, pp 101–109Google Scholar
  7. 7.
    Yamaguchi N, Koyama Y, Fujimaki M (1981) Progr Food Nutr Sci. Vol 5:429–439Google Scholar
  8. 8.
    Hofmann T (2001) In: Ames JM (ed) Melanoidins in food and health, vol.1, Office for Official publications of the European Communities, Luxembourg, EUR 19684, pp 31—43Google Scholar
  9. 9.
    Chuyen NV, Ijichi K, Umetsu H, Moteki K (1998) In: Shaidi et al. (ed) Process-induced chemical changes in food, Plenum, New York, pp 207—212Google Scholar
  10. 10.
    Wedzica BL, Kaputo MT (1992) Food Chem 43:359–367CrossRefGoogle Scholar
  11. 11.
    Caemmerer B, Kroh LW (1995) Food Chem 53:55–59CrossRefGoogle Scholar
  12. 12.
    Ames JM, Caemmerer B, Velisek J, Cejpek K, Obretenov C, Cioroi M (2000) In: Ames JM (ed) In melanoidins in food and health, vol.1, Office for Official Publications of the European Communities, Luxembourg, EUR 19684, pp 13–29Google Scholar
  13. 13.
    Borrelli RC, Fogliano V, Monti SM, Ames JM (2002) Eur Food Res Technol 215:210–215CrossRefGoogle Scholar
  14. 14.
    Kourosch AT, Keriene M, Adams A, Venskutonis R, De Kimpe N (2002) J Agric Food Chem 50:4062–4068CrossRefGoogle Scholar
  15. 15.
    Wagner K-H, Derkits S, Herr M, Schuh W, Elmadfa I (2002) Food Chem 78:375–382CrossRefGoogle Scholar
  16. 16.
    Daglia M, Papetti A, Gregotti C, Berte F, Gazzani G (2000) J Agric Food Chem 48:1449–1454CrossRefGoogle Scholar
  17. 17.
    Del Castillo MD, Ames JM, Gordon MH (2002) J Agric and Food Chem 50:3698–3703CrossRefGoogle Scholar
  18. 18.
    Nicoli MC, Anese M, Manzocco L, Lerici CR (1997) Lebensm-Wissensch Technol 30:292–297CrossRefGoogle Scholar
  19. 19.
    Borrelli RC, Visconti A, Mennella C, Anese M, Fogliano V (2002) J Agric Food Chem 50:6527–6533CrossRefGoogle Scholar
  20. 20.
    Anese M, Nicoli C (2003) J Agric Food Chem 51:942–946CrossRefGoogle Scholar
  21. 21.
    Borrelli RC, Mennella C, Barba F, Russo M, Russo G L, Krome K, Erbersdobler HF, Faist V, Fogliano V (2003) Food Chem Toxicol 41:1367–1374CrossRefGoogle Scholar
  22. 22.
    Singleton VL and Rossi JA (1965) Am J of Enol Vit 16:144–158Google Scholar
  23. 23.
    Folin–Ciocalteu Index (1992) Off J Eur Commun 178–179Google Scholar
  24. 24.
    Brand-Williams W, Cuvelier ME, Berset C (1995) Lebensm-Wissensch Technol 28:25–30Google Scholar
  25. 25.
    Halliwell B, Aeschbach R, Loliger J, Aruoma OI (1995) Food Chem Toxicol 33:601–617CrossRefGoogle Scholar
  26. 26.
    Re R, Pellegrini N, Proteggente A (1999) Free Rad Biol Med 26:1231–1237CrossRefGoogle Scholar
  27. 27.
    Gil MI, Tomas-Barberan F. A., Hess-Pierce B, Holcroft DM, Kader AA (2000) J Agric Food Chem 48:4581–4589CrossRefGoogle Scholar
  28. 28.
    Wang H, Cao G, Prior RL (1996) J Agric Food Chem 44:701–705CrossRefGoogle Scholar
  29. 29.
    Arnao MB (2000) Tr Food Technol 11:419–421CrossRefGoogle Scholar
  30. 30.
    Kim DO, Lee KW, Lee HJ, Lee CY (2002) J Agric Food Chem 50:3713–3717CrossRefGoogle Scholar
  31. 31.
    EURACHEM / CITAC Guide (2000) Quantifying Uncertainty in Analytical Measurement, 2nd edn, Springer, BerlinGoogle Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • Carmelina Summa
    • 1
  • Fernando Cordeiro Raposo
    • 1
  • Josephine McCourt
    • 1
  • Roberto Lo Scalzo
    • 2
  • Karl-Heinz Wagner
    • 3
  • Ibrahim Elmadfa
    • 3
  • Elke Anklam
    • 1
  1. 1.European Commission, DG Joint Research CentreInstitute for Reference Materials and MeasurementGeelBelgium
  2. 2.Experimental Institute for Agricultural Products Technologies 26MilanItaly
  3. 3.Institute of Nutritional SciencesUniversity of ViennaViennaAustria

Personalised recommendations