European Food Research and Technology

, Volume 221, Issue 6, pp 809–813 | Cite as

Aronia melanocarpa phenolics and their antioxidant activity

  • Jan OszmiańskiEmail author
  • Aneta Wojdylo
Original Paper


The purpose of the present study was to evaluate small and high molecular phenolics (tannins) and antioxidant activity of Aronia melanocarpa berries, juice and pomace in order to find new potential sources of natural antioxidants. The fruits of Aronia melanocarpa Elliot were collected in the middle of October at a plantation near Wroclaw, Poland. The pomace has a much higher content of phenolics in comparision to juice and fruits. Results showed that polymeric proanthocyanins, predominantly of (−)epicatechin, are the major class of polyphenolic compounds in chokeberry, represent 66% of fruits polyphenols. The average concentration ranged from 1578.79 mg/100 g of DW for chokeberry juice up to 8191.58 mg/100 g in pomace. The concentration of phenolic acids (chlorogenic and neochlorogenic acids) in juice was higher than in pomace. Anthocyanins in Aronia melanocarpa are second phenolic compound group and represent about 25% of total polyphenols, mixture of four different cyanidin glycosides: 3-galactoside, 3-glucoside, 3-arabinoside and 3-xyloside. The higher antioxidant activity expressed as TEAC was measured in pomace >fruit >juice.


Aronia melanocarpa Phenolic acids Tannin Anthocyanin glycosides Antioxidant 



This work was supported by the State Committee for Scientific Research of Poland (KBN) under grant PBZ-KBN-94/P06/2003/24.


  1. 1.
    Ramarathnam N, Ochi H, Takeuchi M (1997) Antioxidant defense system in vegetable extracts. In natural antioxidants: chemistry. health effects. and applications. Shahidi F. AOCS Press: Champaign. IL, pp 76–87Google Scholar
  2. 2.
    Macheix JJ, Fleuriet A, Billot J (1990) Fruit Phenolics. CRC Press: Boca Raton, FLGoogle Scholar
  3. 3.
    Cao G, Booth SL, Sadowski JA, Prior RL (1998) Am J Clin Nutr 68:1081–1087PubMedGoogle Scholar
  4. 4.
    Hertog MGL, Feskens EJM, Hollman PCH, Katan MB, Kromhout D (1993) Lancet 342:1007–1011CrossRefPubMedGoogle Scholar
  5. 5.
    Knekt P, Jarvinen R, Reunanen A, Maatela J (1996) Br Med J 312:478–481Google Scholar
  6. 6.
    Loliger J (1991) The use of antioxidants in food. In: Aruoma OI, Halliwell B (eds) Free Radicals and Food Additives. Taylor and Francis, London, pp 129–150Google Scholar
  7. 7.
    Rice-Evans CA, Miller NJ, Bolwell PG, Bramley PM, Pridham JB (1995) Free Radical Res 22:375–383Google Scholar
  8. 8.
    Meyer AS, Yi OS, Pearson DA, Waterhouse AI, Frankel EN (1997) J Agric Food Chem 45:1638–1643CrossRefGoogle Scholar
  9. 9.
    Wang H, Cao G, Prior RL (1997) J Agric Food Chem 45:304–309CrossRefGoogle Scholar
  10. 10.
    Constantino L, Albasino A, Rastelli G, Benvenuti S (1992) Planta Med 58:342–344PubMedCrossRefGoogle Scholar
  11. 11.
    Meyer AS, Donovan JL, Pearson DA, Waterhouse AI, Frankel EN (1998) J Agric Food Chem 46:1783–1787CrossRefGoogle Scholar
  12. 12.
    Heinonen IM, Meyer AS, Frankel EN (1998) J Agric Food Chem 46:4107–4112CrossRefGoogle Scholar
  13. 13.
    Zheng W, Wang S (2003) J Agric Food Chem 2003 51:502–509PubMedCrossRefGoogle Scholar
  14. 14.
    Kahkonen MP, Hopia AI, Vuorela HJ, Rauha JP, Pihlaja K, Kujala TS, Heinonen M (1999) J Agric Food Chem 47:3954–3962CrossRefPubMedGoogle Scholar
  15. 15.
    Gasiorowski K, Szyba K, Brokos B, Kołaczyńska B, Jankowiak-Wlodarczyk M, Oszmiański J (1997) Cancer Letters 119:37–46CrossRefGoogle Scholar
  16. 16.
    Matsumoto M, Hara H, Chiji H, Kasai T (2004) J Agric Food Chem 52:2226–2229CrossRefPubMedGoogle Scholar
  17. 17.
    Strigl AW, Leitner E, Pfannhauser W (1995) Zeit Lebens Unters Forsch 91:177–180Google Scholar
  18. 18.
    Oszmiański J, Sapis JC (1988) J Food Sci 53(4):1241–1242CrossRefGoogle Scholar
  19. 19.
    Oszmiański J, Sapis JC (1989) Zesz Nauk AR Wrocław Techn Żywn V 184:75–87Google Scholar
  20. 20.
    Slimestad R, Torskangerpoll K, Nateland HS, Johannessen T, Giske NH (2005) J Food Compos Anal 18:61–68CrossRefGoogle Scholar
  21. 21.
    Gu L, Kelm MA, Hammerstone JF, Beecher G, Holden J, Haytowitz D, Gebhardt S, Prior RL (2004) J Nutr 134(3):613–617PubMedGoogle Scholar
  22. 22.
    Oszmiański J, Kucharska A (1995) Zesz Nauk AR Wrocław Techn Żywn VIII 273:75–87Google Scholar
  23. 23.
    Santos-Buelga C, Scalbert A (2000) J Sci Food and Agric 80:1094–1117CrossRefGoogle Scholar
  24. 24.
    Bagchi D, Bagchi M, Stohs SJ, Das DK, Ray SD, Kuszynski CA (2000) Toxicology 148(2–3):187–197CrossRefPubMedGoogle Scholar
  25. 25.
    Reed J (2002) Crit Rev Food Sci Nutr 42(Suppl) 301–316PubMedCrossRefGoogle Scholar
  26. 26.
    Steinberg F, Bearden M, Keen C (2003) J Am Diet Assoc 103:215–223CrossRefPubMedGoogle Scholar
  27. 27.
    Murphy KJ, Chronopoulos AK, Singh I, Francis MA, Moriarty H, Pike MJ, Turner AH, Mann NJ, Sinclair AJ (2003) Am J Clin Nutr 77:1466–1473PubMedGoogle Scholar
  28. 28.
    Foo IY, Lu Y, Howell AB, Vorsa N (2000) J Nat Prod 63:1225–1228CrossRefPubMedGoogle Scholar
  29. 29.
    Guyot S, Marnet N, Sanoner P, Drilleau JF (2001) Methods in Enzymology 335:57–70PubMedGoogle Scholar
  30. 30.
    Yen GC, Chen HY (1995) J Agric Food Chem 43:27–32CrossRefGoogle Scholar
  31. 31.
    Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C (1999) Free Radical Biology&Medicine 26(9/10):1231–1237CrossRefGoogle Scholar
  32. 32.
    Cai Y, Luo Q, Sun M, Corke H (2004) Life Sci 74:2157–2184CrossRefPubMedGoogle Scholar
  33. 33.
    Hakkinen SH, Karenlampi SO, Heinonen M, Mykkanen HM, Torronen AR (1999) J Agric Food Chem 47:2274–2279CrossRefPubMedGoogle Scholar
  34. 34.
    Hagerman AE, Riedl KM, Jones GA, Sovik KN, Ritchard NT, Hartzfeld PW, Riechel TL (1998) J Agric Food Chem, 46:1887–1892CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  1. 1.Department of FruitVegetable and Cereal Technology, Agricultural Academy of WroclawWroclawPoland

Personalised recommendations