European Food Research and Technology

, Volume 221, Issue 1–2, pp 208–213 | Cite as

Determination of folate in some cereals and commercial cereal-grain products consumed in Poland using trienzyme extraction and high-performance liquid chromatography methods

Original Paper


A trienzyme treatment (rat plasma conjugase, α-amylase, protease) followed by affinity chromatography (with folate-binding protein from bovine milk) and reversed-phase high-performance liquid chromatography with UV and fluorescence detections was performed for quantification of different folate derivatives in some commercial cereal-grain products and cereals cultivated in Poland. The method described allowed good separation of the main folate vitamins. Of the commercial cereal-grain products analyzed, buckwheat groats (30 μg/100 g) had the highest content of total folate, followed by rye flour (29 μg/100 g), barley groats (21 μg/100 g) and wheat flours (19–20 μg/100 g). Two of the ready-to eat breakfast products were found to be fortified with folic acid with the level slightly exceeding the label declaration. The total folate content of whole-grain wheat flours was more than half as much as in white flours (33–40 μg/100 g), and the highest folate content was found in rye whole grains (123–135 μg/100 g). 5-Formyltetrahydrofolate was the predominating folate form in the cereal products analyzed, above all in rye flour.


Folate Cereals Fortification Rye Wheat High-performance liquid chromatography Food analysis 



This work was supported by the Polish Committee for Scientific Research (KBN), grant no. 3 PO6T 027 23.


  1. 1.
    Konings EJM (1999) J AOAC Int 82:119–127Google Scholar
  2. 2.
    Shane B (1995) In: Bailey LB (ed) Folate chemistry and metabolism (Folate in health and disease). Marcel Dekker, New York, pp 1–22Google Scholar
  3. 3.
    Stevenson RE, Allen WP, Pai GS, Best R, Seaver LH, Dean J, Thompson S (2000) Pediatrics 106:677–683Google Scholar
  4. 4.
    Czeizel AE, Duda I (1992) N Engl J Med 327:32–35Google Scholar
  5. 5.
    Bousey CJ, Beresford SA, Omenn GS, Motulsky AG (1995) J Am Med Assoc 274:1049–1057CrossRefGoogle Scholar
  6. 6.
    Food and Drug Administration (1996) Food standards: amendment of standards of identity for enriched grain products to require addition of folic acid, vol 61. Food and Drug Administration, Rockville, MD, pp 8781–8797Google Scholar
  7. 7.
    Wright AJA, Finglas PM, Southon S (2001) Trends Food Sci 12:313–321CrossRefGoogle Scholar
  8. 8.
    Wharton B, Booth I (2001) Br Med J 323:198–199Google Scholar
  9. 9.
    Finglas PM, Wigertz K, Vahteristo L, Witthöft C, Southon S, de Froidmont-Görtz I (1999) Food Chem 64:245–255CrossRefGoogle Scholar
  10. 10.
    Tamura T (1998) J Nutr Biochem 9:285–293CrossRefGoogle Scholar
  11. 11.
    Jastrebova J, Witthöft C, Grahn A, Svensson U, Jögerstad M (2003) Food Chem 80:579–588CrossRefGoogle Scholar
  12. 12.
    Strålsjö L, Åhlin H, Witthöft CM, Jastrebova J (2003) Eur Food Res Technol 216:264–269Google Scholar
  13. 13.
    Freisleben A, Schieberle P, Rychlik M (2003) Anal Biochem 315:247–255CrossRefGoogle Scholar
  14. 14.
    Pfeiffer CM, Rogers LM, Gregory JF III (1997) J Agric Food Chem 45:407–413CrossRefGoogle Scholar
  15. 15.
    Tamura T, Mizuno Y, Johnston KE, Jacob RA (1997) J Agric Food Chem 45:135–139CrossRefGoogle Scholar
  16. 16.
    Rader JI, Weaver CM, Angyal G (1998) Food Chem 62:451–465CrossRefGoogle Scholar
  17. 17.
    American Association of Cereal Chemists (AACC) (2000) AACC method 44-16: moisture-air-oven (aluminum plate) method. (Approved Methods of the AACC, 10 th edn.) AACC, St. Paul, MNGoogle Scholar
  18. 18.
    Blakley RL (1969) The biochemistry of folic acid and related pteridines. North-Holland, AmsterdamGoogle Scholar
  19. 19.
    Wilson SD, Horne DW (1984) Anal Biochem 142:529–535CrossRefGoogle Scholar
  20. 20.
    Tamura T (1998) Nutr Biochem 9:285–293CrossRefGoogle Scholar
  21. 21.
    Yon M, Hyun TH (2003) Nutr Res 23:735–746CrossRefGoogle Scholar
  22. 22.
    Selhub J, Ahmad O, Rosenberg IH (1980) Methods Enzymol 66:686–690Google Scholar
  23. 23.
    AOAC International (1993) Peer-verified methods program, manual on policies and procedures. AOAC International, Arlington, VAGoogle Scholar
  24. 24.
    Ruggeri S, Vahteristo LT, Aguzzi A, Finglas P, Carnovale E (1999) J Chromatogr A 855:237–245CrossRefGoogle Scholar
  25. 25.
    Kariluoto MS, Vahteristo LT, Piironen VI (2001) J Sci Food Agric 81:938–942CrossRefGoogle Scholar
  26. 26.
    Robinson DR (1971) Methods Enzymol 18B:716–725Google Scholar
  27. 27.
    Gregory JF, Sartain DB, Day BPF (1984) J Nutr 114:341–353Google Scholar
  28. 28.
    Rychlik M (2004) In: First international conference on folate analysis, bioavailability and health, 11–14 February, Warsaw, Poland, Book of Abstracts, p 17Google Scholar
  29. 29.
    Ericson A, Källén B, Äberg A (2001) Twin Res 4:63–66CrossRefGoogle Scholar
  30. 30.
    Witthöft C, Forssen K, Johannesson L, Jägerstad M (1999) Scand J Nutr 43:138–146Google Scholar
  31. 31.
    Kariluoto S, Vahteristo L, Salovaara H, Katina K, Liukkonen KH, Piironen V (2004) Cereal Chem 81:134–139Google Scholar
  32. 32.
    Ranhotra GS, Keagy PM (1995) Cereal Foods World 40:73–75Google Scholar
  33. 33.
    Osseyi EO, Wehling RL, Albrecht JA (2001) Cereal Chem 78:375–378Google Scholar
  34. 34.
    Keagy PM, Borenstein B, Ranum P, Connor MA, Lorenz K, Hobbs E, Hill G, Bachman AL, Boyd WA, Kulp K (1980) Cereal Chem 57:59Google Scholar
  35. 35.
    Müller H (1993) Z Lebensm Unters Forsch 197:573–577Google Scholar
  36. 36.
    Gregory JF (1984) J Assoc Off Anal Chem 67:1015–1019Google Scholar
  37. 37.
    Rader JI, Weaver CM, Angyal G (2000) Food Chem 70:275–289CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  1. 1.Food Science DepartmentUniversity of Warmia and Mazury in OlsztynOlsztynPoland

Personalised recommendations