Advertisement

European Food Research and Technology

, Volume 220, Issue 5–6, pp 466–471 | Cite as

Heat-induced degradation of inulin

  • A. Böhm
  • I. Kaiser
  • A. Trebstein
  • T. HenleEmail author
Original Paper

Abstract

Dry heating of inulin from chicory for up to 60 min at temperatures between 135 and 195 °C resulted in a significant degradation of the fructan ranging from 20 to 100%. The choice of the analytical method has a significant influence on inulin quantification especially in heat-treated samples. The amount of inulin found after thermal treatment measured as fructose after acidic hydrolysis was significantly higher compared with corresponding data obtained with a method based on enzymatic hydrolysis. Using high-performance anion-exchange chromatography with pulsed amperometric detection as well as high-performance thin-layer chromatography, it was found that thermal treatment of inulin leads to a degradation of the long fructose chains and formation of new products, most likely di-D-fructose dianhydrides. These degradation products of inulin are cleavable by acid to fructose monomers, but their glycosidic bonds are no longer accessible for β-fructosidase, thus explaining the discrepancies in inulin quantification with respect to the method used. Inulin degradation must be taken into account when fructan is used as a prebiotic ingredient in thermally treated foods like bakery products.

Keywords

Inulin Thermal treatment Fructose Di-D-fructose dianhydrides High-performance thin-layer chromatography High-performance anion-exchange chromatography with pulsed amperometric detection 

References

  1. 1.
    Boeckner LS, Schnepf MI, Tungland BC (2001) Adv Food Nutr Res 43:1–63Google Scholar
  2. 2.
    Flamm G, Glinsmann W, Kritchevsky D, Prosky L, Roberfroid M (2001) Crit Rev Food Nutr 41(5):353–362Google Scholar
  3. 3.
    Roberfroid MB, Delzenne NM (1998) Annu Rev Nutr 18:117–143CrossRefPubMedGoogle Scholar
  4. 4.
    Van Loo J, Coussement P, De Leenheer L, Hoebregs H, Smits G (1995) Crit Rev Food Sci Nutr 35(6):525–552PubMedGoogle Scholar
  5. 5.
    Niness KR (1999) J Nutr 129:1402S–1406SPubMedGoogle Scholar
  6. 6.
    Coudray C, Tressol JC, Gueux E, Rayssiguier Y (2003) Eur J Nutr 42:91–98CrossRefPubMedGoogle Scholar
  7. 7.
    Roberfroid MB, Van Loo JAE, Gibson GR (1998) J Nutr 128:11–19PubMedGoogle Scholar
  8. 8.
    Gibson GR (1998) Br J Nutr 80:209–212Google Scholar
  9. 9.
    Kleessen B, Hartmann L, Blaut M (2001) Br J Nutr 86:291–300PubMedGoogle Scholar
  10. 10.
    Koball G, Habel A (2002) Getreide Mehl Brot 56:198–203Google Scholar
  11. 11.
    Korakli M, Hinrichs C, Ehrmann MA, Vogel RF (2003) Eur Food Res Technol 217:530–534CrossRefGoogle Scholar
  12. 12.
    Hofer K, Jenewein D (1999) Eur Food Res Technol 209:423–427CrossRefGoogle Scholar
  13. 13.
    Prosky L, Hoebregs H (1999) J Nutr 129:1418S–1423SPubMedGoogle Scholar
  14. 14.
    Quemener B, Thibault J-F, Coussement P (1994) Lebensm Wiss Technol 27:125–132CrossRefGoogle Scholar
  15. 15.
    Zuleta A, Sambucetti ME (2001) J Agric Food Chem 49:4570–4572CrossRefPubMedGoogle Scholar
  16. 16.
    Fretzdorff B, Welge N (2003) Getreide Mehl Brot 57:147–151Google Scholar
  17. 17.
    Praznik W, Cieslik E, Filipiak-Florkiewicz A (2002) Nahrung 46:151–157CrossRefPubMedGoogle Scholar
  18. 18.
    Christian TJ, Manley-Harris M (2000) J Agric Food Chem 48:1823–1837CrossRefPubMedGoogle Scholar
  19. 19.
    Peris-Tortajada M (2000) In: Nollet LML (ed) Food analysis by HPLC. Marcel Dekker Inc, New York, pp 287–302Google Scholar
  20. 20.
    CAMAG (1997) Applikationsschriften zur Instrumentellen Dünnschicht-Chromatographie:Bestimmung von Mono-, Di-, Tri- und PolysaccharidenGoogle Scholar
  21. 21.
    Fretzdorf B, Welge N (2003) Getreide Mehl Brot 57:3–8Google Scholar
  22. 22.
    Ponder GR, Richards GN (1993) Carbohydr Res 244:341–359CrossRefPubMedGoogle Scholar
  23. 23.
    Blize AE, Manley-Harris M, Richards GN (1994) Carbohydr Res 265:31–39CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  1. 1.Institute of Food ChemistryTechnische Universität DresdenDresdenGermany

Personalised recommendations