Skip to main content
Log in

Antioxidant evaluation protocols: Food quality or health effects

  • Review
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

Increasing research on natural antioxidants in foods and development of new assays has prompted critical reflection on the field. It has been common practice to identify health benefits from antioxidant activity on the cellular level with antioxidant capacity of food measured in vitro. The use of antioxidants and their positive effects on food quality has been demonstrated in a large variety of foods and beverages using various methods for detection of lipid and protein oxidation or various assays based on electron transfer or hydrogen-atom transfer. A direct positive effect on markers of oxidative status after dietary intervention has, however, been difficult to confirm and much has still to be learnt about antioxidant action in vivo including synergistic or inhibitory roles, the uptake, biotransformation, and tissue distribution of potential antioxidants. This review critically evaluates various types of assays for antioxidative capacity, i.e. the stoichiometry, and antioxidative activity, i.e. the kinetics of the antioxidant action, with focus on the antioxidant mechanism of natural dietary antioxidants, particularly phenolic compounds, on lipid oxidation. It is concluded that it is difficult to transfer antioxidant mechanisms established in model systems and in foods to the in vivo situation and that no simple relationship has been recognized so far between antioxidant capacity determined for various foods and beverages and health benefits for humans. Screening of antioxidant capacity using simple assays in order to predict positive health effects of food are not scientifically justified. Different protocols will have to be used for evaluation of the protection of food by antioxidants and for evaluation of the health effect of antioxidants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Chipault JR (1962) Antioxidants for food use. In Lundberg WO (ed) Autoxidation and Antioxidants, Wiley, New York, pp 477–542

  2. Halliwell B, Gutteridge JMC (1989) Free Radicals in Biology and Medicine, 2 Ed., Clarendon, Oxford, UK, pp 22–85

  3. Rice-Evans C (2004) Free Radical Biol Med 36:827–828

    Article  CAS  Google Scholar 

  4. Azzi A, Davies KJA, Kelly F (2004) FEBS Lett 558:3-6

    Article  CAS  PubMed  Google Scholar 

  5. Uri N (1961) Mechanism of antioxidation. In Lundberg WO (ed) Autoxidation and Antioxidants, Wiley, New York, pp 133–169

  6. Moure A, Cruz JM, Franco D, Dominguez JM, Sineiro J, Dominguez H, Nunez MJ, Parajo JC (2001) Food Chem 72:145–171

    Article  CAS  Google Scholar 

  7. Madsen HL, Bertelsen G (1995) Trends Food Sci Technol 6:271–277

    Article  CAS  Google Scholar 

  8. Wiseman SA, Balentine DA, Frei B (1997) Crit Rev Food Sci Nutr 37:705–718

    CAS  PubMed  Google Scholar 

  9. Frankel EN, Meyer AS (2000) J Sci Food Agric 80:1925–1941

    Article  CAS  Google Scholar 

  10. Frankel EN (1993) Trends Food Sci Technol 4:220–225

    Article  CAS  Google Scholar 

  11. Madsen HL, Bertelsen G, Skibsted LH (1997) Antioxidative activity of spices and spice extracts. In Risch SJ, Ho CT (ed) Flavor chemistry and antioxidant properties, ACS Symposium Series 660, American Chemical Society, Washington DC, pp 176–187

  12. Singleton VL, Orthofer R, Lamuela-Raventos RM (1999) Oxidants and Antioxidants, Pt A 299:152–178

    Google Scholar 

  13. Amarine MA, Ough CS (1980) Methods for analysis of musts and wines, Wiley, New York, pp 181–184

  14. Heinonen IM, Lehtonen PJ, Hopia AI (1998) J Agri Food Chem 46:25–31

    Article  CAS  Google Scholar 

  15. Kahkonen MP, Hopia AI, Vuorela HJ, Rauha JP, Pihlaja K, Kujala TS, Heinonen M (1999) J Agri Food Chem 47:3954–3962

    Article  CAS  Google Scholar 

  16. Katsube T, Tabata H, Ohta Y, Yamasaki Y, Anuurad E, Shiwaku K, Yamane Y (2004) J Agri Food Chem 52:2391–2396

    Article  CAS  Google Scholar 

  17. Mattila P, Kumpulainen J (2002) J Agri Food Chem 50:3660–3667

    Article  CAS  Google Scholar 

  18. Merken HM, Beecher GR (2000) J Agri Food Chem 48:577–599

    Article  CAS  Google Scholar 

  19. Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C (1999) Free Radical Biol Med 26:1231–1237

    Article  CAS  Google Scholar 

  20. Benzie IFF, Strain JJ (1999) Methods Enzymol 299:15–27

    Article  CAS  PubMed  Google Scholar 

  21. Arnao MB (2000) Trends Food Sci Technol 11:419–421

    Article  CAS  Google Scholar 

  22. Brandwilliams W, Cuvelier ME, Berset C (1995) Food Sci Technol—Lebensmi-Wiss Technol 28:25–30

    Google Scholar 

  23. Madsen HL, Andersen CM, Jorgensen LV, Skibsted LH (2000) Eur Food Res Technol 211:240–246

    Article  CAS  Google Scholar 

  24. Butkovic V, Klasinc L, Bors W (2004) J Agri Food Chem 52:2816–2820

    Article  CAS  Google Scholar 

  25. Gardner PT, McPhail DB, Duthie CG (1998) J Sci Food Agric 76:257–262

    Article  CAS  Google Scholar 

  26. McPhail DB, Gardner PT, Duthie GG, Steele GM, Reid K (1999) J Agri Food Chem 47:1937–1941

    Article  CAS  Google Scholar 

  27. Cao GH, Sofic E, Prior RL (1997) Free Radical Biol Med 22:749–760

    Article  CAS  Google Scholar 

  28. Davalos A, Gomez-Cordoves C, Bartolome B (2004) J Agri Food Chem 52:48–54

    Article  CAS  Google Scholar 

  29. Ou BX, Hampsch-Woodill M, Prior RL (2001) J Agri Food Chem 49:4619–4626

    Article  CAS  Google Scholar 

  30. Thornalley PJ (1986) Life Chemistry Reports 4:57–112

    CAS  Google Scholar 

  31. Madsen HL, Nielsen BR, Bertelsen G, Skibsted LH (1996) Food Chem 57:331–337

    Article  CAS  Google Scholar 

  32. Niki E (1990) Methods Enzymol 186:100–108

    Article  CAS  PubMed  Google Scholar 

  33. Mortensen A, Skibsted LH (1996) Free Radical Res 25:515–523

    CAS  Google Scholar 

  34. Mortensen A, Skibsted LH (1997) FEBS Lett 417:261–266

    Article  CAS  PubMed  Google Scholar 

  35. Roginsky VA, Barsukova TK, Remorova AA, Bors W (1996) JAOCS 73:777–786

    CAS  Google Scholar 

  36. Bors W, Heller W, Michel C, Saran M (1992) Structural principles of flavonoids antioxidants. In Csomós G, Fehér J (ed) Free Radical and the liver, Springer Verlag, Berlin Heidelberg New York, pp 75–95

  37. Schwarz K, Bertelsen G, Nissen LR, Gardner PT, Heinonen MI, Hopia A, Huynh-Ba T, Lambelet P, McPhail D, Skibsted LH, Tijburg L (2001) Eur Food Res Technol 212:319–328

    Article  CAS  Google Scholar 

  38. Wardman P (1989) J Phys Chem Ref Data 18:1637–1755

    CAS  Google Scholar 

  39. Bard A.J., Faulkner L.R (1980) Electrochemical methods, Wiley, New York

  40. Foti M, Ruberto G (2001) J Agri Food Chem 49:342–348

    Article  CAS  Google Scholar 

  41. Valgimigli L, Banks JT, Ingold KU, Lusztyk J (1995) J Am Chem Soc 117:9966–9971

    CAS  Google Scholar 

  42. Barclay LRC, Edwards CE, Vinqvist MR (1999) J Am Chem Soc 121:6226–6231

    Article  CAS  Google Scholar 

  43. Litwinienko G, Ingold KU (2003) J Org Chem 68:3433–3438

    Article  CAS  PubMed  Google Scholar 

  44. Pedrielli P, Pedulli GF, Skibsted LH (2001) J Agri Food Chem 49:3034–3040

    CAS  Google Scholar 

  45. Lucarini M, Pedulli GF, Valgimigli L (1998) J Org Chem 63:4497–4499

    Article  CAS  Google Scholar 

  46. Castle L, Perkins MJ (1986) J Am Chem Soc 108:6381–6382

    CAS  Google Scholar 

  47. Buettner GR (1993) Arch Biochem Biophys 300:535–543

    Article  CAS  PubMed  Google Scholar 

  48. Andersen ML, Lauridsen RK, Skibsted LH (2003) Optimising the use of phenolic compounds in foods. In Johnson I, Williamson G (ed) Photochemical functional foods, Woodhead, CRC Press, Cambridge, England, pp 315–346

  49. Jovanovic SV, Steenken S, Hara Y, Simic MG (1996) J Chem Soc Perk T 2 2497–2504

    Google Scholar 

  50. Andersen ML, Skibsted LH (2002) European Journal of Lipid Science and Technology 104:65–68

    Article  CAS  Google Scholar 

  51. Gray JI (1978) JAOCS 55:539–546

    CAS  Google Scholar 

  52. Porter WL (1993) Toxicology and Industrial Health 9:93–122

    CAS  PubMed  Google Scholar 

  53. Porter WL (1980) Recent trends in food applications of antioxidants. In Simic MG, Karel M (ed) Autoxidation in food and biological systems, Plenum, New York, pp 295–365

  54. Porter WL, Black ED, Drolet AM (1989) J Agri Food Chem 37:615–624

    CAS  Google Scholar 

  55. Huang SW, Hopia A, Schwarz K, Frankel EN, German JB (1996) J Agri Food Chem 44:444–452

    Article  CAS  Google Scholar 

  56. Hansen E, Lauridsen L, Skibsted LH, Moawad RK, Andersen ML (2004) Meat Science 68:185–191

    Article  CAS  Google Scholar 

  57. Nissen LR, Huynh-Bab T, Petersen MA, Bertelsen G, Skibsted LH (2002) Food Chem 79:387–394

    Article  CAS  Google Scholar 

  58. Nissen LR, Mansson L, Bertelsen G, Huynh-Ba T, Skibsted LH (2000) J Agri Food Chem 48:5548–5556

    Article  CAS  Google Scholar 

  59. Nissen LR, Byrne DV, Bertelsen G, Skibsted LH (2004) Meat Science, In press

  60. Lotito SB, Frei B (2004) Free Radical Biol Med 36:201–211

    Article  CAS  Google Scholar 

  61. Walle T (2004) Free Radical Biol Med 36:829–837

    Article  CAS  Google Scholar 

  62. Williams RJ, Spencer JPE, Rice-Evans C (2004) Free Radical Biol Med 36:838–849

    Article  CAS  Google Scholar 

  63. Omenn GS, Goodman GE, Thornquist MD, Balmes J, Cullen MR, Glass A, Keogh JP, Meyskens FL, Valanis B, Williams JH, Barnhart S, Hammar S (1996) New Engl J Med 334:1150–1155

    Article  CAS  PubMed  Google Scholar 

  64. Alpha tocopherol beta carotene cancer prevention study group. The effect of vitamin E and beta carotene on the incidence of lung cancer and other cancers in male smokers (1994) New Engl J Med 330:1029–1035

    Google Scholar 

  65. Eichholzer M, Luthy J, Gutzwiller F, Stahelin HB (2001) Int J Vitam Nutr Res 71:5-17

    CAS  PubMed  Google Scholar 

  66. Marchioli R, Schweiger C, Levantesi G, Tavazzi L, Valagussa F (2001) Lipids 36: S53-S63

    CAS  PubMed  Google Scholar 

  67. Young JF, Dragsted LO, Haraldsdottir J, Daneshvar B, Kall MA, Loft S, Nilsson L, Nielsen SE, Mayer B, Skibsted LH, Huynh-Ba T, Hermetter A, Sandstrom B (2002) Br J Nutr 87:343–355

    Article  CAS  PubMed  Google Scholar 

  68. Upritchard JE, Schuurman RWC, Wiersma A, Tijburg LBM, Coolen SAJ, Rijken PJ, Wiseman SA (2002) Free Radical Res 36:104–105

    CAS  Google Scholar 

  69. Dragsted LO, Pedersen A, Hermetter A, Basu S, Hansen M, Haren GR, Kall M, Breinholt V, Castenmiller JJM, Stagsted J, Jakobsen J, Skibsted L, Rasmussen SE, Loft S, Sandstrom B (2004) Am J Clin Nutr 79:1060–1072

    CAS  PubMed  Google Scholar 

  70. Taubert D, Berkels R, Roesen R, Klaus W (2003) JAMA, J Am Med Assoc 290:1029–1030

    Google Scholar 

  71. Pedrielli P, Skibsted LH (2002) J Agri Food Chem 50:7138–7144

    Article  CAS  Google Scholar 

  72. Racanicci AMC, Danielsen B, Menten JFM, Regitano-d’Arce MAB, Skibsted LH (2004) Eur Food Res Technol 218:521–524

    Article  CAS  Google Scholar 

  73. Buettner GR, Jurkiewicz BA (1996) Chemistry and biochemsitry of ascorbic acid. In Cadenas E, Packer L (ed) Handbook of Antioxidants, Marcel Dekker, New York, pp 91–115

  74. Jia ZS, Zhou B, Yang L, Wu LM, Liu ZL (1998) J Chem Soc Perk T 2 911–915

    Google Scholar 

  75. Trombino S, Serini S, Di Nicuolo F, Celleno L, Ando S, Picci N, Calviello G, Palozza P (2004) J Agri Food Chem 52:2411–2420

    Article  CAS  Google Scholar 

  76. Laranjinha J, Vieira O, Madeira V, Almeida L (1995) Arch Biochem Biophys 323:373–381

    Article  CAS  PubMed  Google Scholar 

  77. Laranjinha J, Cadenas E (1999) Iubmb Life 48:57–65

    Article  CAS  PubMed  Google Scholar 

  78. Mukai K, Oka W, Watanabe K, Egawa Y, Nagaoka S, Terao J (1997) J Phys Chem A 101:3746–3753

    Article  CAS  Google Scholar 

  79. Valgimigli L, Ingold KU, Lusztyk J (1996) J Am Chem Soc 118:3545–3549

    Article  CAS  Google Scholar 

  80. Barclay LRC, Baskin KA, Locke SJ, Schaefer TD (1987) Canadian Journal of Chemistry-Revue Canadienne de Chimie 65:2529–2540

    Google Scholar 

  81. Pryor WA, Strickland T, Church DF (1988) J Am Chem Soc 110:2224–2229

    CAS  Google Scholar 

  82. Barclay LRC, Baskin KA, Dakin KA, Locke SJ, Vinqvist MR (1990) Canadian Journal of Chemistry-Revue Canadienne de Chimie 68:2258–2269

    Google Scholar 

Download references

Acknowledgements

This work is part of the research programme New Antioxidant Strategies for Food Quality and Consumer Health (FOODANTIOX) supported by The Committee for Research and Development of the Öresund region (Öforsk) and The Danish Dairy Research Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leif H. Skibsted.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Becker, E.M., Nissen, L.R. & Skibsted, L.H. Antioxidant evaluation protocols: Food quality or health effects. Eur Food Res Technol 219, 561–571 (2004). https://doi.org/10.1007/s00217-004-1012-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-004-1012-4

Keywords

Navigation