European Food Research and Technology

, Volume 219, Issue 6, pp 561–571 | Cite as

Antioxidant evaluation protocols: Food quality or health effects

  • Eleonora Miquel Becker
  • Lise R. Nissen
  • Leif H. SkibstedEmail author


Increasing research on natural antioxidants in foods and development of new assays has prompted critical reflection on the field. It has been common practice to identify health benefits from antioxidant activity on the cellular level with antioxidant capacity of food measured in vitro. The use of antioxidants and their positive effects on food quality has been demonstrated in a large variety of foods and beverages using various methods for detection of lipid and protein oxidation or various assays based on electron transfer or hydrogen-atom transfer. A direct positive effect on markers of oxidative status after dietary intervention has, however, been difficult to confirm and much has still to be learnt about antioxidant action in vivo including synergistic or inhibitory roles, the uptake, biotransformation, and tissue distribution of potential antioxidants. This review critically evaluates various types of assays for antioxidative capacity, i.e. the stoichiometry, and antioxidative activity, i.e. the kinetics of the antioxidant action, with focus on the antioxidant mechanism of natural dietary antioxidants, particularly phenolic compounds, on lipid oxidation. It is concluded that it is difficult to transfer antioxidant mechanisms established in model systems and in foods to the in vivo situation and that no simple relationship has been recognized so far between antioxidant capacity determined for various foods and beverages and health benefits for humans. Screening of antioxidant capacity using simple assays in order to predict positive health effects of food are not scientifically justified. Different protocols will have to be used for evaluation of the protection of food by antioxidants and for evaluation of the health effect of antioxidants.


Antioxidant evaluation Health effects Synergy 



This work is part of the research programme New Antioxidant Strategies for Food Quality and Consumer Health (FOODANTIOX) supported by The Committee for Research and Development of the Öresund region (Öforsk) and The Danish Dairy Research Foundation.


  1. 1.
    Chipault JR (1962) Antioxidants for food use. In Lundberg WO (ed) Autoxidation and Antioxidants, Wiley, New York, pp 477–542Google Scholar
  2. 2.
    Halliwell B, Gutteridge JMC (1989) Free Radicals in Biology and Medicine, 2 Ed., Clarendon, Oxford, UK, pp 22–85Google Scholar
  3. 3.
    Rice-Evans C (2004) Free Radical Biol Med 36:827–828CrossRefGoogle Scholar
  4. 4.
    Azzi A, Davies KJA, Kelly F (2004) FEBS Lett 558:3-6CrossRefPubMedGoogle Scholar
  5. 5.
    Uri N (1961) Mechanism of antioxidation. In Lundberg WO (ed) Autoxidation and Antioxidants, Wiley, New York, pp 133–169Google Scholar
  6. 6.
    Moure A, Cruz JM, Franco D, Dominguez JM, Sineiro J, Dominguez H, Nunez MJ, Parajo JC (2001) Food Chem 72:145–171CrossRefGoogle Scholar
  7. 7.
    Madsen HL, Bertelsen G (1995) Trends Food Sci Technol 6:271–277CrossRefGoogle Scholar
  8. 8.
    Wiseman SA, Balentine DA, Frei B (1997) Crit Rev Food Sci Nutr 37:705–718PubMedGoogle Scholar
  9. 9.
    Frankel EN, Meyer AS (2000) J Sci Food Agric 80:1925–1941CrossRefGoogle Scholar
  10. 10.
    Frankel EN (1993) Trends Food Sci Technol 4:220–225CrossRefGoogle Scholar
  11. 11.
    Madsen HL, Bertelsen G, Skibsted LH (1997) Antioxidative activity of spices and spice extracts. In Risch SJ, Ho CT (ed) Flavor chemistry and antioxidant properties, ACS Symposium Series 660, American Chemical Society, Washington DC, pp 176–187Google Scholar
  12. 12.
    Singleton VL, Orthofer R, Lamuela-Raventos RM (1999) Oxidants and Antioxidants, Pt A 299:152–178Google Scholar
  13. 13.
    Amarine MA, Ough CS (1980) Methods for analysis of musts and wines, Wiley, New York, pp 181–184Google Scholar
  14. 14.
    Heinonen IM, Lehtonen PJ, Hopia AI (1998) J Agri Food Chem 46:25–31CrossRefGoogle Scholar
  15. 15.
    Kahkonen MP, Hopia AI, Vuorela HJ, Rauha JP, Pihlaja K, Kujala TS, Heinonen M (1999) J Agri Food Chem 47:3954–3962CrossRefGoogle Scholar
  16. 16.
    Katsube T, Tabata H, Ohta Y, Yamasaki Y, Anuurad E, Shiwaku K, Yamane Y (2004) J Agri Food Chem 52:2391–2396CrossRefGoogle Scholar
  17. 17.
    Mattila P, Kumpulainen J (2002) J Agri Food Chem 50:3660–3667CrossRefGoogle Scholar
  18. 18.
    Merken HM, Beecher GR (2000) J Agri Food Chem 48:577–599CrossRefGoogle Scholar
  19. 19.
    Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C (1999) Free Radical Biol Med 26:1231–1237CrossRefGoogle Scholar
  20. 20.
    Benzie IFF, Strain JJ (1999) Methods Enzymol 299:15–27CrossRefPubMedGoogle Scholar
  21. 21.
    Arnao MB (2000) Trends Food Sci Technol 11:419–421CrossRefGoogle Scholar
  22. 22.
    Brandwilliams W, Cuvelier ME, Berset C (1995) Food Sci Technol—Lebensmi-Wiss Technol 28:25–30Google Scholar
  23. 23.
    Madsen HL, Andersen CM, Jorgensen LV, Skibsted LH (2000) Eur Food Res Technol 211:240–246CrossRefGoogle Scholar
  24. 24.
    Butkovic V, Klasinc L, Bors W (2004) J Agri Food Chem 52:2816–2820CrossRefGoogle Scholar
  25. 25.
    Gardner PT, McPhail DB, Duthie CG (1998) J Sci Food Agric 76:257–262CrossRefGoogle Scholar
  26. 26.
    McPhail DB, Gardner PT, Duthie GG, Steele GM, Reid K (1999) J Agri Food Chem 47:1937–1941CrossRefGoogle Scholar
  27. 27.
    Cao GH, Sofic E, Prior RL (1997) Free Radical Biol Med 22:749–760CrossRefGoogle Scholar
  28. 28.
    Davalos A, Gomez-Cordoves C, Bartolome B (2004) J Agri Food Chem 52:48–54CrossRefGoogle Scholar
  29. 29.
    Ou BX, Hampsch-Woodill M, Prior RL (2001) J Agri Food Chem 49:4619–4626CrossRefGoogle Scholar
  30. 30.
    Thornalley PJ (1986) Life Chemistry Reports 4:57–112Google Scholar
  31. 31.
    Madsen HL, Nielsen BR, Bertelsen G, Skibsted LH (1996) Food Chem 57:331–337CrossRefGoogle Scholar
  32. 32.
    Niki E (1990) Methods Enzymol 186:100–108CrossRefPubMedGoogle Scholar
  33. 33.
    Mortensen A, Skibsted LH (1996) Free Radical Res 25:515–523Google Scholar
  34. 34.
    Mortensen A, Skibsted LH (1997) FEBS Lett 417:261–266CrossRefPubMedGoogle Scholar
  35. 35.
    Roginsky VA, Barsukova TK, Remorova AA, Bors W (1996) JAOCS 73:777–786Google Scholar
  36. 36.
    Bors W, Heller W, Michel C, Saran M (1992) Structural principles of flavonoids antioxidants. In Csomós G, Fehér J (ed) Free Radical and the liver, Springer Verlag, Berlin Heidelberg New York, pp 75–95Google Scholar
  37. 37.
    Schwarz K, Bertelsen G, Nissen LR, Gardner PT, Heinonen MI, Hopia A, Huynh-Ba T, Lambelet P, McPhail D, Skibsted LH, Tijburg L (2001) Eur Food Res Technol 212:319–328CrossRefGoogle Scholar
  38. 38.
    Wardman P (1989) J Phys Chem Ref Data 18:1637–1755Google Scholar
  39. 39.
    Bard A.J., Faulkner L.R (1980) Electrochemical methods, Wiley, New YorkGoogle Scholar
  40. 40.
    Foti M, Ruberto G (2001) J Agri Food Chem 49:342–348CrossRefGoogle Scholar
  41. 41.
    Valgimigli L, Banks JT, Ingold KU, Lusztyk J (1995) J Am Chem Soc 117:9966–9971Google Scholar
  42. 42.
    Barclay LRC, Edwards CE, Vinqvist MR (1999) J Am Chem Soc 121:6226–6231CrossRefGoogle Scholar
  43. 43.
    Litwinienko G, Ingold KU (2003) J Org Chem 68:3433–3438CrossRefPubMedGoogle Scholar
  44. 44.
    Pedrielli P, Pedulli GF, Skibsted LH (2001) J Agri Food Chem 49:3034–3040Google Scholar
  45. 45.
    Lucarini M, Pedulli GF, Valgimigli L (1998) J Org Chem 63:4497–4499CrossRefGoogle Scholar
  46. 46.
    Castle L, Perkins MJ (1986) J Am Chem Soc 108:6381–6382Google Scholar
  47. 47.
    Buettner GR (1993) Arch Biochem Biophys 300:535–543CrossRefPubMedGoogle Scholar
  48. 48.
    Andersen ML, Lauridsen RK, Skibsted LH (2003) Optimising the use of phenolic compounds in foods. In Johnson I, Williamson G (ed) Photochemical functional foods, Woodhead, CRC Press, Cambridge, England, pp 315–346Google Scholar
  49. 49.
    Jovanovic SV, Steenken S, Hara Y, Simic MG (1996) J Chem Soc Perk T 2 2497–2504Google Scholar
  50. 50.
    Andersen ML, Skibsted LH (2002) European Journal of Lipid Science and Technology 104:65–68CrossRefGoogle Scholar
  51. 51.
    Gray JI (1978) JAOCS 55:539–546Google Scholar
  52. 52.
    Porter WL (1993) Toxicology and Industrial Health 9:93–122PubMedGoogle Scholar
  53. 53.
    Porter WL (1980) Recent trends in food applications of antioxidants. In Simic MG, Karel M (ed) Autoxidation in food and biological systems, Plenum, New York, pp 295–365Google Scholar
  54. 54.
    Porter WL, Black ED, Drolet AM (1989) J Agri Food Chem 37:615–624Google Scholar
  55. 55.
    Huang SW, Hopia A, Schwarz K, Frankel EN, German JB (1996) J Agri Food Chem 44:444–452CrossRefGoogle Scholar
  56. 56.
    Hansen E, Lauridsen L, Skibsted LH, Moawad RK, Andersen ML (2004) Meat Science 68:185–191CrossRefGoogle Scholar
  57. 57.
    Nissen LR, Huynh-Bab T, Petersen MA, Bertelsen G, Skibsted LH (2002) Food Chem 79:387–394CrossRefGoogle Scholar
  58. 58.
    Nissen LR, Mansson L, Bertelsen G, Huynh-Ba T, Skibsted LH (2000) J Agri Food Chem 48:5548–5556CrossRefGoogle Scholar
  59. 59.
    Nissen LR, Byrne DV, Bertelsen G, Skibsted LH (2004) Meat Science, In pressGoogle Scholar
  60. 60.
    Lotito SB, Frei B (2004) Free Radical Biol Med 36:201–211CrossRefGoogle Scholar
  61. 61.
    Walle T (2004) Free Radical Biol Med 36:829–837CrossRefGoogle Scholar
  62. 62.
    Williams RJ, Spencer JPE, Rice-Evans C (2004) Free Radical Biol Med 36:838–849CrossRefGoogle Scholar
  63. 63.
    Omenn GS, Goodman GE, Thornquist MD, Balmes J, Cullen MR, Glass A, Keogh JP, Meyskens FL, Valanis B, Williams JH, Barnhart S, Hammar S (1996) New Engl J Med 334:1150–1155CrossRefPubMedGoogle Scholar
  64. 64.
    Alpha tocopherol beta carotene cancer prevention study group. The effect of vitamin E and beta carotene on the incidence of lung cancer and other cancers in male smokers (1994) New Engl J Med 330:1029–1035Google Scholar
  65. 65.
    Eichholzer M, Luthy J, Gutzwiller F, Stahelin HB (2001) Int J Vitam Nutr Res 71:5-17PubMedGoogle Scholar
  66. 66.
    Marchioli R, Schweiger C, Levantesi G, Tavazzi L, Valagussa F (2001) Lipids 36: S53-S63PubMedGoogle Scholar
  67. 67.
    Young JF, Dragsted LO, Haraldsdottir J, Daneshvar B, Kall MA, Loft S, Nilsson L, Nielsen SE, Mayer B, Skibsted LH, Huynh-Ba T, Hermetter A, Sandstrom B (2002) Br J Nutr 87:343–355CrossRefPubMedGoogle Scholar
  68. 68.
    Upritchard JE, Schuurman RWC, Wiersma A, Tijburg LBM, Coolen SAJ, Rijken PJ, Wiseman SA (2002) Free Radical Res 36:104–105Google Scholar
  69. 69.
    Dragsted LO, Pedersen A, Hermetter A, Basu S, Hansen M, Haren GR, Kall M, Breinholt V, Castenmiller JJM, Stagsted J, Jakobsen J, Skibsted L, Rasmussen SE, Loft S, Sandstrom B (2004) Am J Clin Nutr 79:1060–1072PubMedGoogle Scholar
  70. 70.
    Taubert D, Berkels R, Roesen R, Klaus W (2003) JAMA, J Am Med Assoc 290:1029–1030Google Scholar
  71. 71.
    Pedrielli P, Skibsted LH (2002) J Agri Food Chem 50:7138–7144CrossRefGoogle Scholar
  72. 72.
    Racanicci AMC, Danielsen B, Menten JFM, Regitano-d’Arce MAB, Skibsted LH (2004) Eur Food Res Technol 218:521–524CrossRefGoogle Scholar
  73. 73.
    Buettner GR, Jurkiewicz BA (1996) Chemistry and biochemsitry of ascorbic acid. In Cadenas E, Packer L (ed) Handbook of Antioxidants, Marcel Dekker, New York, pp 91–115Google Scholar
  74. 74.
    Jia ZS, Zhou B, Yang L, Wu LM, Liu ZL (1998) J Chem Soc Perk T 2 911–915Google Scholar
  75. 75.
    Trombino S, Serini S, Di Nicuolo F, Celleno L, Ando S, Picci N, Calviello G, Palozza P (2004) J Agri Food Chem 52:2411–2420CrossRefGoogle Scholar
  76. 76.
    Laranjinha J, Vieira O, Madeira V, Almeida L (1995) Arch Biochem Biophys 323:373–381CrossRefPubMedGoogle Scholar
  77. 77.
    Laranjinha J, Cadenas E (1999) Iubmb Life 48:57–65CrossRefPubMedGoogle Scholar
  78. 78.
    Mukai K, Oka W, Watanabe K, Egawa Y, Nagaoka S, Terao J (1997) J Phys Chem A 101:3746–3753CrossRefGoogle Scholar
  79. 79.
    Valgimigli L, Ingold KU, Lusztyk J (1996) J Am Chem Soc 118:3545–3549CrossRefGoogle Scholar
  80. 80.
    Barclay LRC, Baskin KA, Locke SJ, Schaefer TD (1987) Canadian Journal of Chemistry-Revue Canadienne de Chimie 65:2529–2540Google Scholar
  81. 81.
    Pryor WA, Strickland T, Church DF (1988) J Am Chem Soc 110:2224–2229Google Scholar
  82. 82.
    Barclay LRC, Baskin KA, Dakin KA, Locke SJ, Vinqvist MR (1990) Canadian Journal of Chemistry-Revue Canadienne de Chimie 68:2258–2269Google Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  • Eleonora Miquel Becker
    • 1
  • Lise R. Nissen
    • 1
  • Leif H. Skibsted
    • 1
    Email author
  1. 1.Food Chemistry, Department of Food ScienceThe Royal Veterinary and Agricultural UniversityFrederiksberg CDenmark

Personalised recommendations