European Food Research and Technology

, Volume 220, Issue 2, pp 142–151 | Cite as

Chemical, sensory and rheological properties of some commercial German and Egyptian tomato ketchups

  • A. M. Sharoba
  • B. SengeEmail author
  • H. A. El-Mansy
  • H. ElM. Bahlol
  • R. Blochwitz
Original Paper


The rheological behaviour of eight tomato ketchups measured in the shear rate range from 0.1 to 100 1/s and with oscillatory tests was studied over a wide range of temperatures (0–50 °C) using a Physica UDS 200 rheometer. The results indicated that these tomato ketchups behave as non-Newtonian fluids semi-solid and have a definite yield stress. The relationship between ηeff and temperature of all the tomato ketchup brands under investigation was examined. Significantly higher correlation was found between ηeff and temperature. The ηeff values decrease with an increase in temperature. Oscillatory test data revealed weak gel-like (dispersion structure) behaviour of the ketchup: the magnitudes of G′ were higher than those of G″, and both increased with oscillatory frequency. The effect of temperature on the viscosity can be described by means of an Arrhenius-type equation. The flow activation energy for viscous flow depends on the chemical composition; the flow activation energy increases with the total solids contents. Chemical, physical and sensory tests for tomato ketchups were made.


Tomato ketchup Chemical composition Rheological parameters Flow behaviour Oscillatory test Flow activation energy 


  1. 1.
    Gupta RK (1998) SBP handbook of export oriented food processing projects. SBPPF Book Store, SBP Consultants and EngineersGoogle Scholar
  2. 2.
    Porretta S, Birzi A (1995) Sci-Aliments 15:529–540Google Scholar
  3. 3.
    Porretta S (1991) J Sci-Food Agric 57:293–301Google Scholar
  4. 4.
    Rao MA (1987) Food Technol 41:85–88Google Scholar
  5. 5.
    Thomas HA, Sidel JL, Stone H (1995) Relationships between rheological and sensory properties of liquid foods. Trogon Corporation Symposium, USAGoogle Scholar
  6. 6.
    Szczeniak A (1987) J Texture Stud 18:1–15Google Scholar
  7. 7.
    Houska M, Valentova H, Novotna P, Strohalm J, Sestak J, Pokorny J (1998) J Texture Stud 14:603–615Google Scholar
  8. 8.
    Porretta S, Sandei L, Leoni C (1989) Ind Conserve 64:21–27Google Scholar
  9. 9.
    Rani U, Banins GS (1987) J Texture Stud 18:125–135Google Scholar
  10. 10.
    Bottiglieri P, DeSio F, Fasanaro G, Mojoli G, Impembo M, Castaldo D (1991) J Food Qual 14:497–512Google Scholar
  11. 11.
    Bistany KL, Kokini JL (1983) J Texture Stud 14:113–124Google Scholar
  12. 12.
    Bistany KL, Kokini JL (1983) J Rheol 27:605–620Google Scholar
  13. 13.
    Association of Official Analytical Chemists (1995) Official methods of analysis, 16th edn. Association of Official Analytical Chemists, USAGoogle Scholar
  14. 14.
    Pearson D (1976) The chemical analysis of food, 7th edn. Churchill, LondonGoogle Scholar
  15. 15.
    El-Mansy HA, Bahlol HElM, Mahmoud MH, Sharoba AMA (2000) AnnAgric Sci Moshtohor 38:1521–1538Google Scholar
  16. 16.
    Meydov S, Saguy I, Kopelman IJ (1977) J Agric Food Chem 25:602Google Scholar
  17. 17.
    Wettestein DV (1957) Exp Cell Res 12:427–433PubMedGoogle Scholar
  18. 18.
    Ranganna S (1997) Manual of analysis of fruit and vegetable products. Tata McGraaw-Hill, New Delhi, India.Google Scholar
  19. 19.
    Alvarado JD (1991) J Food Process Eng 14:189–195Google Scholar
  20. 20.
    Senge B (2001) Optimierung des Transport- und Mischverhaltens nicht-Newtonischer plastischer Medien am Beispiel von Speisequark. GDL-Kongress, Lebensmitteltechnologie, 8–10 November 2001, Berlin, GermanyGoogle Scholar
  21. 21.
    Rao MA, Cooley HJ (1992) J Texture Stud 23:415–425Google Scholar
  22. 22.
    Yoo B, Rao MA (1996) J Texture Stud 27:451–459Google Scholar
  23. 23.
    El-Mansy HA, Bahlol HElM, Mahmoud HM, Sharoba AMA (2000) Ann Agric Sci Moshtohor 38:1557–1574Google Scholar
  24. 24.
    Ibarz A, Garvin A, Casta J (1996) J Food Eng 27:423–430CrossRefGoogle Scholar
  25. 25.
    Gomez KA, Gomez AA (1984) Statistical procedures for agriculture research, 2 edn. Wiley, New York, pp 129–184Google Scholar
  26. 26.
    Canovas GV, Peleg M (1983) J Texture Stud 14:213–234Google Scholar
  27. 27.
    France Centre de Recherches Foch (1990) Tomato ketchup. Med Nutr 26:319Google Scholar
  28. 28.
    Orzaez MT, Matallana MC, Palomino P, Valdehita MT, Diaz A (1991) Anal Bromatol 4345–49Google Scholar
  29. 29.
    Vitacel (2002) Tomato ketchup made with Vitacel tomato fiber
  30. 30.
    Sharoba AMA (1999) Rheological studies on some foods. MSc thesis. Zagazig University, Egypt.Google Scholar
  31. 31.
    Tonucci LH, Holden JM, Beecher GR, Khachik F, Davis CS, Mulokozi G (1995) J Agric Food Chem 43:579–586Google Scholar
  32. 32.
    Djuric Z, Powell LC (2001) Int J Food Sci Nutr 52:143–149PubMedGoogle Scholar
  33. 33.
    Tavares CA, Rodriguez DB (1994) Lebensm-Wiss Technol 27:219–222.Google Scholar
  34. 34.
    Wilberg VC, Rodriguez DB (1993) Cien Tecnol Aliment 13:132–141Google Scholar
  35. 35.
    Saravacos GD, Kostaropoulos AE (1995) Food Technol 9:99–105Google Scholar
  36. 36.
    Ramos AM, Ibarz A (1998) J Food Eng 35:57–63Google Scholar
  37. 37.
    Lewis MJ (1987) Physical properties of foods and food processing systems. Ellis Harwood, Chichester, UK, pp 220–229Google Scholar
  38. 38.
    Chaffai AH (1991) Sci Aliments 11:673–681Google Scholar
  39. 39.
    Young IL, Seung JL, Wan SN (1997) Agric Chem Biotechnol 40:48–52Google Scholar
  40. 40.
    Toledo RT (1980) Fundamentals of food process engineering. AVI, West Port, CT, pp 152–196Google Scholar
  41. 41.
    Charm SE (1980) Fundamentals of food engineering. AVI, West Port, CT, pp 54–78Google Scholar
  42. 42.
    Bayindirli (1992) J Food Process Preserv 16:23–28Google Scholar
  43. 43.
    Vanwazer JR, Lyons JW, Kin KY, Colwell RE (1963) Viscosity and flow measurement. Interscience, New YorkGoogle Scholar
  44. 44.
    Singh NI, Eipeson WE (2000) J Texture Stud 31:287–295Google Scholar
  45. 45.
    Yoo B (2001) J Texture Stud 32:307–318Google Scholar
  46. 46.
    Harper JC, El Sahrigi AF (1965) J Food Sci 30:470–476Google Scholar
  47. 47.
    Rao MA, Bovrne MC, Cooley HJ (1981) J Texture Stud 12:521–538Google Scholar
  48. 48.
    Kunzek H, Opel H, Senge B (1997) Z Lebensm Unters Forsch 205:193–203CrossRefGoogle Scholar
  49. 49.
    Mezger T (2003) Characterization of the structure at rest in foods (example: ketchup). Food/campden-11-03/ ketchup-struc-at-rest 1 August 2003. Mez. Physica Messtechnik, Ostfildern, GermanyGoogle Scholar
  50. 50.
    Steffe JF (1996) Rheological methods in food process engineering, 2nd edn. Freeman, East Lansing, MIGoogle Scholar
  51. 51.
    Jimenez L, Ferrer L, Paniego ML (1989) J Food Eng 9:119–128CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • A. M. Sharoba
    • 1
    • 2
  • B. Senge
    • 2
    Email author
  • H. A. El-Mansy
    • 1
  • H. ElM. Bahlol
    • 1
  • R. Blochwitz
    • 2
  1. 1.Food Science Department, Moshtohor Faculty of AgricultureZagazig University (Banha Branch)MoshtohorEgypt
  2. 2.Food Rheology Department, Faculty of Process SciencesTechnische UniversitätBerlinGermany

Personalised recommendations