European Food Research and Technology

, Volume 219, Issue 4, pp 409–415 | Cite as

In vitro analysis of binding capacities of calcium to phytic acid in different food samples

  • Ferial Dendougui
  • Georg SchwedtEmail author
Original Paper


The present work was performed to study the role which plays phytic acid in calcium binding, and to determine the calcium binding capacities in different foods, using in vitro extractions. Different food samples (soybeans, oats, chickpea, rice flour, and corn semolina) were extracted for 4 h at 37 °C using artificial simulated gastrointestinal juice (pepsin) at pH=2. The total calcium and phytic acid concentrations were determined by AAS and capillary electrophoresis, respectively, at pH=2 and pH=8 after neutralisation with a sodium hydroxide solution (3 M). Having determined the binding capacities of calcium in each food, we then use these results to estimate the fraction of calcium available for resorption during the process of digestion, when food moves from the acid pH of the stomach to the alkaline milieu of the intestines. The results obtained for the foods analysed show that the capacity of calcium to bind to phytic acid exhibits a clear pH dependence. The calculated calcium binding capacities, or the molar ratio of calcium to phytic acid in the in vitro extracted foods, varies from 3 mol calcium per mol phytic acid for soybean, chickpea and oats, to 2 mol calcium per mol phytic acid for rice, to1 mol calcium per mol phytic acid in corn semolina. Calcium may bind to one or more of the phosphate groups of phytic acid. Previous studies have demonstrated that phytic acid has the ability to bind minerals, proteins, and starch, and have then considered it as an inhibitor to the bioavailability of minerals and trace elements.


Calcium binding capacity Bioavailability Phytic acid Food analysis In vitro extraction 


  1. 1.
    Nordin BE (1997) Food Nutr Agr 20:3–26Google Scholar
  2. 2.
    Frossard E, Bucher M, Mächler F, Mozafar A, Hurrell R (2000) J Sci Food Agric 80:861–879CrossRefGoogle Scholar
  3. 3.
    Harpreet KG, Charanjeet KH, Kawatra BL (1999) J Food Sci Tech 36(5):453–456Google Scholar
  4. 4.
    Kamao M, Tsugawa N, Nakagwa K (2000) J Nutr Sci Vitaminol 46:34–41PubMedGoogle Scholar
  5. 5.
    Hansen M, Sandström B, Lônnerdal B (1996) Pediatr Res 40(4):547–552PubMedGoogle Scholar
  6. 6.
    Walter A, Rimbach G, Most E, Pallauf J (2000) J Vet Med A 47:367–377CrossRefGoogle Scholar
  7. 7.
    Siequeira EMA et al (2001) Arch Latinoam Nutr 51(3):250–257PubMedGoogle Scholar
  8. 8.
    Nolan KB, Duffin PA (1987) J Sci Food Agric 40:79–85Google Scholar
  9. 9.
    Kennefick S, Cashman KD (2000) Int J Food Sci Nutr 51:45–54CrossRefPubMedGoogle Scholar
  10. 10.
    Shen L, Robberecht H, Van deal P, Deelstra H (1995) Biol Trace Elem Res 49:107–118PubMedGoogle Scholar
  11. 11.
    Van Dyck K, Tas S, Robberecht H, Deelstra H (1996) Int J Food Sci Nutr 47:499–506PubMedGoogle Scholar
  12. 12.
    Siener R, Heynck H, Hesse A (2001) J Agr Food Chem 49:4397–4401CrossRefGoogle Scholar
  13. 13.
    Dendougui F, Schwedt G (2002) Eur Food Res Technol 215(1):76–82CrossRefGoogle Scholar
  14. 14.
    Sarriá B, Vaquero MP (2001) J Nutr Biochem 12:266–273CrossRefPubMedGoogle Scholar
  15. 15.
    Pabón ML, Lönnerdal B (2000) J Trace Elem Med Bio 14:146–153Google Scholar
  16. 16.
    Bosscher D, Lu Z, Janssens G, Van Caillie-Bertrand M (2001) Brit J Nutr 86:241–247PubMedGoogle Scholar
  17. 17.
    Walters MGE, Schreuder HAW, Van den Heuvel G et al (1993) Brit J Nutr 69:849–861PubMedGoogle Scholar
  18. 18.
    Mamiro PRS, Van Camp J, Mwikya SM, Huyghebaret A (2001) J Food Sci 66(9):1271–1275Google Scholar
  19. 19.
    Bosscher D, Lu Z, Van Caillie-Bertrand M, Robberecht H, De Bruyne T, De Rycke H, Janssens GPJ, De Wilde R, Deelstra H (2001) Brit J Nutr 86:241–247PubMedGoogle Scholar
  20. 20.
    Shen L, Luten J, Robberecht H, Bindels J, Deelstra H (1994) Eur Food Res Technol 199:442–445Google Scholar
  21. 21.
    Fairweather-Tait SJ, Hurrell RF (1996) Nutr Res Rev 9:295–324Google Scholar
  22. 22.
    Frolich W (1995) Eur J Clin Nutr 49 (3):116–122Google Scholar
  23. 23.
    Bosscher D, Van Dyck K, Robberecht H, Van Caillie-Bertrand M, Deelstra H (1998) Int J Food Sci Nutr 49:277–283Google Scholar
  24. 24.
    Roig MJ, Alegría A, Barberà R, Farré R, Lagarda MJ (1999) Food Chem 65:353–357CrossRefGoogle Scholar
  25. 25.
    Roig MJ, Alegría A, Barberà R, Farré R, Lagarda MJ (1999) Food Chem 64:403–409CrossRefGoogle Scholar
  26. 26.
    Wienk KJH, Marx JJM, Beynen AC (1999) Eur J Nutr 38:51–57CrossRefPubMedGoogle Scholar
  27. 27.
    Jovaní M, Barberá R, Farré R, Martín de Aguilera E (2001) J Agr Food Chem 49:3480–3485CrossRefGoogle Scholar
  28. 28.
    Ekmekcioglu C, Pomazal K, Steffan I, Schweiger B, Marktl W (1999) J Agr Food Chem 47:2594–2599CrossRefGoogle Scholar
  29. 29.
    Oatway L, Vasanthan T, Hels JH (2001) Food Rev Int 17(4):419–431CrossRefGoogle Scholar
  30. 30.
    Asada K, Tanaka K, Kasai Z (1969) Ann NY Acad Sci 165:801–814PubMedGoogle Scholar
  31. 31.
    Williams SG (1970) Plant Physiol 45:376–381Google Scholar
  32. 32.
    Graf E, Epson KL, Eaton JW (1987) J Biol Chem 262:11647–11650PubMedGoogle Scholar
  33. 33.
    Reddy NR, Sathe SK, Salunkhe DK (1982) Adv Food Res 28:1–92PubMedGoogle Scholar
  34. 34.
    Urbano G, López-Jurado M, Aranda P, Vidal-Valeverde C, Tenorio E, Porres J (2000) J Physiol Biochem 56(3):283–294PubMedGoogle Scholar
  35. 35.
    Rickard SE, Thompson LU (1997) Interactions and biological effects of phytic acid. In: Shahidi F (ed) Antinutrients and phytochemicals in foods (ACS Symposium Series 662). American Chemical Society, Washington, DC, pp 294–312Google Scholar
  36. 36.
    Johnson LF, Tate ME (1969) Can J Chem 47:63–73Google Scholar
  37. 37.
    Cheryan M (1980) Crit Rev Food Sci 13:297–301Google Scholar
  38. 38.
    Grases F, Simonet BM, Vucenik I, Prieto RM, Costa-Bauzá A, March JG, Shamsuddin AM (2001) Biofactors 15:53–61PubMedGoogle Scholar
  39. 39.
    Loewus FA, Murthy PPN (2000) Plant Sci 150:1–19CrossRefGoogle Scholar
  40. 40.
    Bosscher D, Van Caillie-Bertrand M, Robberecht H, Van Dyck K, Van Cauwenbergh, Deelstra H (2001) J Pediatr Gastr Nutr 32:54–58CrossRefGoogle Scholar
  41. 41.
    Guillem A, Alegría A, Barberà R, Farré R, Lagarda MJ, Clemente G (2000) Biol Trace Elem Res 3:1–8Google Scholar
  42. 42.
    Heseker B, Heseker H (1999) Nährstoffe in lebensmitteln. Umschauzeitschriftenverlag Breidenstein GmbH, Frankfurt am MainGoogle Scholar
  43. 43.
    Souci SW, Fachmann W, Kraut H (1994) Food composition and nutrition tables (5th revised and completed edn). MedPharm Scientific, Stuttgart, Germany (CRC, Boca Raton, FL)Google Scholar
  44. 44.
    Dendougui F, Schwedt G (2002) Deut Lebensm–Rundsch 98:183–189Google Scholar
  45. 45.
    Graf E (1983) J Agr Food Chem 31:851–855Google Scholar
  46. 46.
    Grases F, Simonet BM, Prieto RM, March JG (2001) J Trace Elem Med Bio 15:221–228Google Scholar
  47. 47.
    Erdman JW Jr (1979) J Am Oil Chem Soc 56:736–741Google Scholar
  48. 48.
    Allen LH (1982) Am J Clin Nutr 35:783–808PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  1. 1.Institute for Inorganic and Analytical ChemistryTechnical University of ClausthalClausthal-ZellerfeldGermany

Personalised recommendations