European Food Research and Technology

, Volume 217, Issue 4, pp 311–318 | Cite as

Normalized Weibull distribution for modeling rehydration of food particulates

  • A. Marabi
  • S. Livings
  • M. Jacobson
  • I. S. Saguy
Original Paper


Dehydrated food particulates have a rapidly growing market, and their reconstitution is essential in meeting consumers' expectations. Optimal reconstitution properties can be achieved by controlling the drying process and the rehydration conditions. Fundamentals of transport phenomena, particularly diffusion, external resistance and relaxation are some of the mechanisms governing water uptake during rehydration. The Weibull distribution is applied in many biological systems, and was found valuable in the modeling of the rehydration process. Simulation and experimental data showed that the traditional Weibull distribution should be normalized to account for product geometry, thickness and final water content. The Weibull β-shape parameter varied with geometry and the mechanism of water uptake. The derived values for spheres, cylinders and slabs were for diffusion: 0.67, 0.72 and 0.81 respectively; for internal resistance: 1.00, 0.98 and 0.97 respectively; and for relaxation: 1.21, 1.32 and 1.60 respectively. The Weibull distribution provides an insight into the rehydration phenomena that govern water uptake by foods containing particulates during rehydration, and could be used for differentiating between diffusion, external resistance and relaxation processes.


Diffusion Weibull distribution Imbibition Carrots 



The financial support of Nestlé is greatly appreciated.


  1. 1.
    Hollingsworth P (2002) Food Technol 56:18Google Scholar
  2. 2.
    Hsu KH (1983) J Food Sci 48:618–622Google Scholar
  3. 3.
    Hsu KH, Kim CJ, Wilson LA (1983) Cereal Chem 60:208–211Google Scholar
  4. 4.
    Singh BPN, Kulshrestha SP (1987) J Food Sci 52:1583–1541Google Scholar
  5. 5.
    Quast DG, Silva SD (1977) J Food Sci 42:1299–1303Google Scholar
  6. 6.
    Neubert AM, Wilson III CW, Miller WH (1968) Food Technol 22:94–99Google Scholar
  7. 7.
    Curry JC, Burns EE, Heidelbaugh ND (1976) J Food Sci 41:176–179Google Scholar
  8. 8.
    Horn GR, Sterling C (1982) J Sci Food Agric 33:1035–1041Google Scholar
  9. 9.
    Eshtiaghi MN, Stute R, Knorr D (1994) J Food Sci 59:1168–1170Google Scholar
  10. 10.
    García–Reverter J, Bourne MC, Mulet A (1994) J Food Sci 59:1181–1183Google Scholar
  11. 11.
    Angersbach A, Knorr D (1997) Nahrung 41:194–200Google Scholar
  12. 12.
    Lewicki PP, Witrowa RD, Pomaranska LW, Nowak D (1998) Int J Food Properties 1:275–290Google Scholar
  13. 13.
    Lin TM, Durance TD, Scaman CH (1998) Food Res Int 31:111–117CrossRefGoogle Scholar
  14. 14.
    Rastogi NK, Niranjan K (1998) J Food Sci 63:508–511Google Scholar
  15. 15.
    Krokida MK, Kiranoudis CT, Maroulis ZB (1999) J Food Eng 40:269–277CrossRefGoogle Scholar
  16. 16.
    Maté JI, Zwietering M, van't Riet K (1999) Z Lebensm Unters Forsch A 209:343–347Google Scholar
  17. 17.
    Sanjuán N, Simal S, Bon A, Mulet A (1999) J Food Eng 42:27–31CrossRefGoogle Scholar
  18. 18.
    Femenia A, Bestard MJ, Sanjuan N, Rossello C, Mulet A (2000) J Food Eng 46:157–163CrossRefGoogle Scholar
  19. 19.
    Rastogi NK, Angersbach A, Niranjan K, Knorr D (2000) J Food Sci 65:838–841Google Scholar
  20. 20.
    Ade–Omowaye BIO, Angersbach A, Taiwo KA, Knorr D (2001) Trends Food Sci Technol 12:285–295Google Scholar
  21. 21.
    Krokida MK, Maroulis ZB (2001) Int J Food Sci Technol 36:529–538CrossRefGoogle Scholar
  22. 22.
    Durance TD, Wang JH (2002) J Food Sci 67:2212–2216Google Scholar
  23. 23.
    Kaymak–Ertekin F (2002) J Food Sci 67:168–175Google Scholar
  24. 24.
    Taiwo KA, Angersbach A, Knorr D (2002) J Food Eng 52:185–192CrossRefGoogle Scholar
  25. 25.
    Taiwo KA, Angersbach A, Knorr D (2002) J Food Sci 67:842–847Google Scholar
  26. 26.
    Krokida MK, Marinos–Kouris D (2003) J Food Eng 57:1–7CrossRefGoogle Scholar
  27. 27.
    Zhang TY, Bakshi AS, Gustafson RJ, Lund DB (1984) J Food Sci 49:246–250Google Scholar
  28. 28.
    Sopade PA, Ajisegiri ES, Badau MH (1992) J Food Eng 15:269–283Google Scholar
  29. 29.
    Lu R, Siebenmorgen TJ, Archer TR (1994) J Food Process Eng 17:141–154Google Scholar
  30. 30.
    Ilincanu LA, Oliveira FAR, Drumond MC, Machado MF, Gekas V (1995) Modeling moisture uptake and soluble solids losses during rehydration of dried apple pieces. In: Oliveira JC (ed) Proceedings of the first workshop of the Copernicus project. Process optimization and minimal processing of foods. Vol. 3:drying. Escola Superior de Biotecnologia. Porto, pp. 64–69Google Scholar
  31. 31.
    Lewicki PP, Witrowa–Rajchert D, Mariak J (1997) J Food Eng 32:347–350CrossRefGoogle Scholar
  32. 32.
    Mastrocola D, Dalla Rosa M, Massini R (1997) Food Res Int 30:359–364CrossRefGoogle Scholar
  33. 33.
    Pappas C, Tsami E, Marinos–Kouris D (1999) Drying Technol 17:157–174Google Scholar
  34. 34.
    Rastogi NK, Angersbach A, Knorr D (2000) J Food Sci 65:1016–1019Google Scholar
  35. 35.
    Maskan M (2001) J Food Eng 48:177–182CrossRefGoogle Scholar
  36. 36.
    Prothon F, Ahrne LM, Funebo T, Kidman S, Langton M, Sjoholm I (2001) Lebensm Wiss Technol 34:95–101CrossRefGoogle Scholar
  37. 37.
    Duce SL, Hall LD (1995). J Food Eng 26:251–257CrossRefGoogle Scholar
  38. 38.
    Hills BP, Babonneau F, Quantin VM, Gaudet F, Belton PS (1996) J Food Eng 27:71–86CrossRefGoogle Scholar
  39. 39.
    Machado MF, Oliveira FAR, Gekas V (1997) Modeling water uptake and soluble solids losses by puffed breakfast cereal immersed in water or milk. In: Jowitt R (ed) Proceedings of the Seventh International Congress on Engineering and Food—Part I. Sheffield Academic Press, Sheffield, pp A65–A68Google Scholar
  40. 40.
    Machado MF, Oliveira FAR, Gekas V, Singh RP (1998) Int J Food Sci Technol 33:225–237Google Scholar
  41. 41.
    Machado MF, Oliveira FAR, Cunha LM (1999) Int J Food Sci Technol 34:47–57CrossRefGoogle Scholar
  42. 42.
    McMinn WAM, Magee TRA (1997) J Food Eng 33:49–55CrossRefGoogle Scholar
  43. 43.
    Lewicki PP (1998) J Food Eng 36:81–87CrossRefGoogle Scholar
  44. 44.
    Lewicki PP (1998) Int J Food Properties 1:1–22Google Scholar
  45. 45.
    Oliveira FAR, Ilincanu L (1999) Rehydration of dried plant tissues: basic concepts and mathematical modeling. In: Oliveira FAR, Oliveira JC (eds) Processing foods. CRC, Boca Raton, Fla., pp 201–227Google Scholar
  46. 46.
    Marabi A, Shah J, Dilak C, Saguy IS (2003) Presented at the 2003 IFT Annual Meeting, Chicago, Ill (Paper 29E-8).Google Scholar
  47. 47.
    Peppas NA, Brannon-Peppas L (1994) J Food Eng 22:189–210Google Scholar
  48. 48.
    Cunha LM, Oliveira FAR, Ilincanu LA, Drumond MC (1998) Application of the probabilistic Weibull distribution to rehydration kinetics: relationship between the model parameters and the underlying physical mechanisms. In: Oliveira JC, Oliveira FAR (eds) Proceedings of the Third Workshop of the Copernicus project. Process optimization and minimal processing foods, Vol. 3: drying. Escola Superior de Biotecnologia, Porto, pp 9–13Google Scholar
  49. 49.
    Peleg M, Cole MB (1998) Crit Rev Food Sci Nutr 38:353–380Google Scholar
  50. 50.
    van Boekel MAJS (2002) Int J Food Microbiol 74:139–159CrossRefPubMedGoogle Scholar
  51. 51.
    Hopkinson I, Jones RAL, McDonald PJ, Newling B, Lecat A, Livings S (2001) Polymer 42:4947–4956CrossRefGoogle Scholar
  52. 52.
    Cunha LM, Oliveira FAR, Oliveira JC (1998) J Food Eng 37:175–191CrossRefGoogle Scholar
  53. 53.
    Cunha LM, Oliveira FAR, Aboim AP, Frias, JM, Pinheiro-Torres A (2001) Int J Food Sci Technol 36:253–262CrossRefGoogle Scholar
  54. 54.
    Weibull W (1939) The Royal Swedish Institute of Engineering Research (Ingenors Vetenskaps Akadiens Handlingar), Proc No 151Google Scholar
  55. 55.
    Weibull W (1951) J Appl Mech 18:293–297Google Scholar
  56. 56.
    Rosin P, Rammler E (1933) J Inst Fuel 7:27–36Google Scholar
  57. 57.
    Brown WK, Wohletz KH (1995) J App Phys 78:2758–2763CrossRefGoogle Scholar
  58. 58.
    Misra MK, Brooker DB (1980) Trans ASAE 23:1254–1260Google Scholar
  59. 59.
    Page G (1949). Cited by Chhinnan MS (1984). Trans ASAE 27:610–615Google Scholar
  60. 60.
    Holland FA, Chapman FS (1966) Liquid mixing and processing in stirred tanks. Reinhold, New York, pp 1–28Google Scholar
  61. 61.
    AOAC (1990) Official method of analysis, 15th edn. Association of Official Analytical Chemists, Arlington, Va.Google Scholar
  62. 62.
    Crank J (1975) The mathematics of diffusion, 2nd edn. Clarendon, OxfordGoogle Scholar
  63. 63.
    Enscore DJ, Hopfenberg HB, Stannett VT (1977) Polymer 18:793–800CrossRefGoogle Scholar
  64. 64.
    Azevedo ICA, Oliveira FAR, Drumond MC (1998) Math Comput Simul 48:11–22CrossRefGoogle Scholar
  65. 65.
    Saravacos GD (1995) Mass transfer properties of foods. In: Rao MA, Rizvi SSH (eds). Engineering properties of foods. Dekker, New York, pp 169–221Google Scholar
  66. 66.
    Vaccarezza LM, Chirife J (1978) J Food Sci 43:236–238Google Scholar
  67. 67.
    Jason AC (1958) A study of evaporation and diffusion process in drying of fish muscle. In: Fundamental aspects of dehydration of foodstuffs. Society of Chemical Industry, London, pp103–135Google Scholar
  68. 68.
    Tütüncü MA, Labuza TP (1996) J Food Eng 30:433–447CrossRefGoogle Scholar
  69. 69.
    Rastogi NK, Eshtiaghi MN, Knorr D (1999) J Food Sci 64:1020–1023Google Scholar
  70. 70.
    Ruiz-Cabrera MA, Salgado-Cervantes MA, Waliszewski-Kubiak, KN, García-Alvarado MA (1997) Drying Technol 15:169–181Google Scholar
  71. 71.
    Hallström B (1990) J Food Eng 12:45–52Google Scholar
  72. 72.
    Benavente D, Lock P, Del Cura MAG, Ordóñez S (2002) Transport Porous Med 49:59–76CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2003

Authors and Affiliations

  • A. Marabi
    • 1
  • S. Livings
    • 2
  • M. Jacobson
    • 2
  • I. S. Saguy
    • 1
  1. 1.Institute of Biochemistry, Food Science and Nutrition, Faculty of Agriculture, Food and Environmental Quality Sciences The Hebrew University of JerusalemRehovotIsrael
  2. 2.Nestlé Product Technology CenterNew MilfordUSA

Personalised recommendations