Laser induced breakdown spectroscopy (LIBS) as an analytical tool for the detection of metal ions in aqueous solutions

  • R. Knopp
  • F. J. Scherbaum
  • J. I. Kim
Original Paper General Chemistry


Laser induced breakdown spectroscopy (LIBS) is applied to analyze aqueous solutions of Li+, Na+, Ca2+, Ba2+, Pb2+, Cd2+, Hg2+ and Er3+ and suspensions of ErBa2Cu3Ox particles (d = 0.2 μm). An excimer (308 nm) pumped dye laser with laser pulse at 500 nm and pulse energy at 22 ±2 mJ is used to produce plasma in aqueous solution. Plasma emission lines of the elements are detected by a photodiode array detector. Detection limits of the metal ions are 500 mg/l for Cd2+, 12.5 mg/l for Pb2+, 6.8 mg/l for Ba2+, 0.13 mg/l for Ca2+, 13 μg/l for Li+ and 7.5 μg/l for Na+. No mercury and erbium emission can be detected, even at Hg2+ and Er3+ concentrations of up to the g/l range. On the other side, for Er in suspensions of ErBa2Cu3Ox particles a more than 103 times higher sensitivity is found than for dissolved Er3+. This result gives a possibility to analyze colloid-borne metal ions with an increased sensitivity.


Emission Line Plasma Emission Laser Induce Breakdown Spectroscopy Photoacoustic Signal Heavy Metal Element 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Radziemski LJ, Cremers DA (1989) Laser-induced plasmas and applications. Dekker, New York BaselGoogle Scholar
  2. 2.
    Majidi V, Rae JT, Ratliff J (1991) Anal Chem 63: 1600CrossRefGoogle Scholar
  3. 3.
    Coche M, Berthoud T, Mauchien P, Camus P (1989) Appl Spectrosc 43: 646CrossRefGoogle Scholar
  4. 4.
    Bettis JR (1992) Appl Opt 31: 3448CrossRefGoogle Scholar
  5. 5.
    Kagawa K, Kawai K, Tani M, Kobayashi T (1994) Appl Spectrosc 48: 198CrossRefGoogle Scholar
  6. 6.
    Cremers DA (1987) Appl Spectrosc 41: 572CrossRefGoogle Scholar
  7. 7.
    Aguilera JA, Aragon C, Campos J (1992) Appl Spectrosc 46: 1382CrossRefGoogle Scholar
  8. 8.
    Franzke D, Klos H, Wokaun A (1992) Appl Spectrosc 46: 587CrossRefGoogle Scholar
  9. 9.
    Ottesen DK (1992) Appl Spectrosc 46: 593CrossRefGoogle Scholar
  10. 10.
    Kagawa K, Deguchi Y, Ogata A, Kurniawan H, Ikeda N, Takagi Y (1991) Jap J Appl Phys 30: L1899CrossRefGoogle Scholar
  11. 11.
    Wisbrun R, Niessner R, Schroeder H (1993) Anal Meth Instrum 1: 17Google Scholar
  12. 12.
    Cremers DA, Radziemski LJ (1983) Anal Chem 55: 1252CrossRefGoogle Scholar
  13. 13.
    Schwebel AH, Ronn AM (1983) Chem Phys Lett 100: 178CrossRefGoogle Scholar
  14. 14.
    Chylek P, Jarzembski MA, Chou NY, Pinnick RG (1986) Appl Phys Lett 49: 1475CrossRefGoogle Scholar
  15. 15.
    Biswas A, Latifi H, Radziemski LJ, Armstrong RL (1988) Appl Opt 27: 2386CrossRefGoogle Scholar
  16. 16.
    Ottesen DK, Wang JCF, Radziemski LJ (1989) Appl Spectrosc 43: 967CrossRefGoogle Scholar
  17. 17.
    Cremers DA, Radziemski LJ, Loree TR (1984) Appl Spectrosc 38: 721CrossRefGoogle Scholar
  18. 18.
    Wachter JR, Cremers DA (1987) Appl Spectrosc 41: 1042CrossRefGoogle Scholar
  19. 19.
    Archontaki HA, Crouch SR (1989) Appl Spectrosc 42: 741CrossRefGoogle Scholar
  20. 20.
    Cheung N, Yeung ES (1993) Appl Spectrosc 47: 882CrossRefGoogle Scholar
  21. 21.
    Lechner MD, D’Ans-Lax (1992) Taschenbuch für Chemiker und Physiker, vol 1, 4th edn. Springer, Berlin Heidelberg New YorkGoogle Scholar
  22. 22.
    Hughes TP (1975) Plasmas and laser light. Hilger, BristolGoogle Scholar
  23. 23.
    Meggers WF, Corliss CH, Scribner BF (1961) Tables of spectralline intensities. NBS Monograph 32—Part IGoogle Scholar

Copyright information

© Springer-Verlag 1996

Authors and Affiliations

  • R. Knopp
    • 1
  • F. J. Scherbaum
    • 1
  • J. I. Kim
    • 1
  1. 1.Institut für RadiochemieTechnische Universität MünchenGarchingGermany

Personalised recommendations