Space and time-resolved laser-induced breakdown spectroscopy using charge-coupled device detection

  • J. M. Vadillo
  • M. Milán
  • J. J. Laserna
Original Paper General Chemistry


Space and time-resolved studies of laser induced plasmas in air at atmospheric pressure are presented. Photovoltaic solar cells have been used as samples. The second harmonic (532 nm) of a Nd: YAG laser at an irradiance of 18 × 1012 W/cm2 has been used. The precise focus of the beam allows a microanalysis at a 0.02 mm2 surface area working in single-shot mode. The use of an intensified charge-coupled device (CCD) detector has allowed time-resolved studies in both imaging or spectroscopy modes. The two-dimensional capability of the CCD has enabled the study of atomic and ionic species distribution along the plume. Most data have been recorded using single-laser shot experiments. Spectral lines have been assigned to transitions in atomic components of the material under investigation in the neutral or ionic states of the corresponding atoms. Effects of delay in improving spectral resolution and some examples of spectral characterization of species as a function of its decay are shown.


Anal Chim Glass Lens Photovoltaic Solar Cell Plasma Lifetime Spectrograph Entrance Slit 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Cremers DA, Radziemsky LJ, Loree TR (1984) Appl Spectrosc 38: 721CrossRefGoogle Scholar
  2. 2.
    Cabalín LM, Calvo N, Ayala L, Laserna JJ (1992) Quim Anal 12: 96Google Scholar
  3. 3.
    Morris JB, Forch BE, Miziolek AW (1990) Appl Spectrosc 44: 1040CrossRefGoogle Scholar
  4. 4.
    Wachter JR, Cremers DA (1987) Appl Spectrosc 41: 1042CrossRefGoogle Scholar
  5. 5.
    Ng KC, Ayala NL, Simeonsson JB, Winefordner JD (1992) Anal Chim Acta 269: 123CrossRefGoogle Scholar
  6. 6.
    Ottesen DK (1992) Appl Spectrosc 46: 593CrossRefGoogle Scholar
  7. 7.
    Lorenzen CJ, Carlhoff C, Hahn U, Jogwich M (1992) J Anal Atom Spectrom 7: 1029CrossRefGoogle Scholar
  8. 8.
    Ottesen DK, Wang JCF, Radziemsky LJ (1989) Appl Spectrosc 46: 967CrossRefGoogle Scholar
  9. 9.
    Laserna JJ, Calvo N, Cabalín LM (1993) Anal Chim Acta 289: 113CrossRefGoogle Scholar
  10. 10.
    Lee YI, Thiem TL, Kim GH, Teng YY, Sneddon J (1992) Appl Spectrosc 46: 1597CrossRefGoogle Scholar
  11. 11.
    Thiem TL, Salter RH, Gardner JA, Lee YI, Sneddon J (1994) Appl Spectrosc 48: 58CrossRefGoogle Scholar
  12. 12.
    Dittrich K, Mohamad I, Hguyen HT, Niebergall K, Pfeifer M, Weinrich R (1990) Fresenius J Anal Chem 337: 546CrossRefGoogle Scholar
  13. 13.
    Sneddon J, Mitchell PG, Nogar NS (1989) In: Radziemsky LJ, Cremers DA (eds) Laser-induced plasmas and applications, Chap 9. Dekker, New YorkGoogle Scholar
  14. 14.
    Moenke-Blankenburg L (1993) In: Vertes A, Gijbels R, Adams F (eds) Laser ionization mass analysis, Chap 4B. Wiley, New YorkGoogle Scholar
  15. 15.
    Montes R (1994) In: Laserna JJ, Pérez Bendito L (eds) Temas avanzados de análisis químico, Chap 3. Edinford, MálagaGoogle Scholar
  16. 16.
    Weyl GM (1989) In: Radziemski LJ, Cremers DA (eds) Laserinduced plasmas and applications, Chap 1. Dekker, New YorkGoogle Scholar
  17. 17.
    Kim YW (1989) In: Radziemski LJ, Cremers DA (eds) Laserinduced plasmas and applications, Chap 8. Dekker, New YorkGoogle Scholar
  18. 18.
    Reader J, Corliss CH, Wiese WL, Martin GA (1980) In: Wavelengths and transition probabilities for atoms and atomic ions. NSRDS-NBS 68. US Government Printing Office, Washington, DCGoogle Scholar

Copyright information

© Springer-Verlag 1996

Authors and Affiliations

  • J. M. Vadillo
    • 1
  • M. Milán
    • 1
  • J. J. Laserna
    • 1
  1. 1.Faculty of Sciences, Department of Analytical ChemistryUniversity of MálagaMálagaSpain

Personalised recommendations