Advertisement

Fresenius' Journal of Analytical Chemistry

, Volume 357, Issue 4, pp 401–404 | Cite as

Simultaneous separation and microdetermination of cobalt(II), nickel(II) and copper(II)

  • M. A. Kabil
  • S. E. Ghazy
  • A. A. El-Asmy
  • Y. E. Sherif
Original Paper Inorganic Analysis

Abstract

A sensitive and selective flotation procedure for the separation of microamounts of Co(II), Ni(II) and Cu(II) separately or in admixture is described. The maximum separation rate (∼ 1) for 0.1 mmol/L of each analyte is achieved using 1 mmol/L of both oleic acid (HOL) surfactant and 4-phenylthiosemicarbazide (HPTS) as a collector in the pH range 6–7. A method for the simultaneous separation and microdetermination of the analytes is elaborated, based on adding excess HPTS and floating the species with HOL at pH ∼6. The filtrate (which is clear brownish-yellow) obtained from the scum is used for the spectrophotometric determination of Co(II) at 350 nm. The formation constants of 1:1 and 1:2 [Co(II):HPTS] species are 6.9 × 105 and 1.22 × 1010 L mol−1, respectively. Beer’s law is obeyed up to 9 μg/mL of Co(II) with a molar absorptivity of 1.15 × 104 L mol−1 cm−1. The precipitate in the scum layer is quantitatively collected, dissolved in aqua regia and aspirated directly into the flame for the (AAS) determination of Ni and Cu. The procedure is successfully applied to some natural water samples. A mechanism for the separation of the analytes is proposed.

Keywords

Surfactant Oleic Acid Natural Water Sample Simultaneous Separation Flotation Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Koutlemani MM, Mavros P, Zouboulis AI, Matis KA (1994) Sep Sci Technol 29: 867CrossRefGoogle Scholar
  2. 2.
    Huang SD, Wu TP, Lung CH, Sheu GL, Wu C, Chen MH (1988) Colloid Interface Sci 124: 666CrossRefGoogle Scholar
  3. 3.
    Bhattacharjee S, Dasgupta P, Jha SN, Rao AS, Gupta KK, Pandey LP (1993) Talanta 40: 675CrossRefGoogle Scholar
  4. 4.
    Hobo T, Yamada K, Suzuki S (1986) Anal Sci 2: 361CrossRefGoogle Scholar
  5. 5.
    Huang SD, Huang MK, Gua JY, Wu TP, Huang JY (1988) Sep Sci Technol 23: 449Google Scholar
  6. 6.
    Nakashima S, Sturgeon RE, Willie SN, Berman SS (1988) Fresenius Z Anal Chem 330: 592CrossRefGoogle Scholar
  7. 7.
    Okutani T, Uzaw A, Yoshimura W (1989) Bunseki Kagaku 38: 120Google Scholar
  8. 8.
    Tuker AR, Tunceli A (1993) Fresenius J Anal Chem 345: 755CrossRefGoogle Scholar
  9. 9.
    West TS, Nurnberg HW (1988) The determination of trace metals in natural waters. Blackwell, New York LondonGoogle Scholar
  10. 10.
    Lin JL, Sataki M, Puri BK (1985) Analyst 110: 1351CrossRefGoogle Scholar
  11. 11.
    Nagahiro T, Uesugi K, Sataki M, Puri BK (1985) Bull Chem Soc Jpn 58: 1115CrossRefGoogle Scholar
  12. 12.
    Ghazy SE, Kabil MA (1994) Bull Chem Soc Jpn 67: 2098CrossRefGoogle Scholar
  13. 13.
    Raoot KN, Raoot S, Kumari VL (1983) Talanta 30: 611CrossRefGoogle Scholar
  14. 14.
    Narayana B, Gajendragad MR (1993) Asian J Chem 5: 121Google Scholar
  15. 15.
    Chavan JD, Joshi VP (1990) J Ind Chem Soc 67: 935Google Scholar
  16. 16.
    Mostafa MM, Shallaby AM, El-Asmy AA (1981) J Inorg Nucl Chem 43: 2992CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1997

Authors and Affiliations

  • M. A. Kabil
    • 1
  • S. E. Ghazy
    • 1
  • A. A. El-Asmy
    • 1
  • Y. E. Sherif
    • 1
  1. 1.Chemistry Department, Faculty of ScienceMansoura UniversityMansouraEgypt

Personalised recommendations