Fresenius' Journal of Analytical Chemistry

, Volume 368, Issue 6, pp 585–588 | Cite as

Inverse vs. classical calibration for small data sets

  • J. Tellinghuisen
Original Paper


In classical calibration, the statistically uncertain variable y is regressed on the error-free variable x for a number of known samples, and the results are used to estimate the x value (x 0) for an unknown sample from its measured y value (y 0). It has long been known that inverse calibration – regression of x on y for the same data – is more efficient in its prediction of x 0 from y 0 than the seemingly more appropriate classical procedure, over large ranges of the controlled variable x. In the present work, theoretical expressions and Monte Carlo calculations are used to illustrate that the comparison favors the inverse procedure even more for small calibration data sets than for the large sets that have been emphasized in previous studies.


Large Range Calibration Data Small Data Unknown Sample Monte Carlo Calculation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • J. Tellinghuisen
    • 1
  1. 1.Department of Chemistry, Vanderbilt University, Nashville, Tennessee, USA 37235 e-mail: tellinjb@ctrvax.vanderbilt.eduUS

Personalised recommendations