Advertisement

Column bleed in the analysis of highly polar substances: an overlooked aspect in HRMS

  • Bastian Schulze
  • Tobias Bader
  • Wolfram SeitzEmail author
  • Rudi Winzenbacher
Research Paper
Part of the following topical collections:
  1. Persistent and Mobile Organic Compounds – An Environmental Challenge

Abstract

To close the “analytical gap” in the liquid chromatographic (LC) analysis of highly polar substances, two techniques which have been suggested earlier were tested in terms of retention factors and detection limits: hydrophilic interaction liquid chromatography (HILIC) and mixed-mode chromatography (MMC). A substance mix of 55 analytes ranging from logD − 8.2 to 3.4 and 17 different LC columns, also comprising additional reversed-phase columns were used. Contrary to most reversed-phase columns, column bleed has been identified as an important factor, which may cause serious restrictions during high-resolution mass spectrometric detection (HRMS). We found that highly abundant background masses continuously eluting from the columns heavily influence ion transmission to the detector. As a result, the linear dynamic range as well as the sensitivity decreases and thus limits the HRMS applicability of some columns. We therefore recommend a thorough investigation of ion transmission during HRMS method development. This will help to maintain the high potential of HRMS in terms of qualitative and quantitative screening analysis.

Keywords

Ion transmission HILIC MMC Mass spectrometry PMOC PMT 

Notes

Supplementary material

216_2020_2387_MOESM1_ESM.pdf (362 kb)
ESM 1 (PDF 361 kb)

References

  1. 1.
    Berger U, Ost N, Sättler D, Schliebner I, Kühne R, Schüürman G, et al. Assessment of persistence, mobility and toxicity (PMT) of 167 REACH registered substances. Umweltbundesamt (UBA) Texte. 2018;9:2018.Google Scholar
  2. 2.
    Reemtsma T, Berger U, Arp HPH, Gallard H, Knepper TP, Neumann M, et al. Mind the gap: persistent and mobile organic compounds—water contaminants that slip through. Environ Sci Technol. 2016;50(19):10308–15.  https://doi.org/10.1021/acs.est.6b03338.CrossRefPubMedGoogle Scholar
  3. 3.
    Kalberlah F, Oltmanns J, Schwarz M, Baumeister J, Striffler A. Guidance for the precautionary protection of raw water destined for drinking water extraction from contaminants regulated under REACH. UFOPLAN Project FKZ 371265416. 2014.Google Scholar
  4. 4.
    Bieber S, Greco G, Grosse S, Letzel T. RPLC-HILIC and SFC with mass spectrometry: polarity-extended organic molecule screening in environmental (water) samples. Anal Chem. 2017;89(15):7907–14.  https://doi.org/10.1021/acs.analchem.7b00859.CrossRefPubMedGoogle Scholar
  5. 5.
    Trautwein C, Berset J-D, Wolschke H, Kümmerer K. Occurrence of the antidiabetic drug metformin and its ultimate transformation product guanylurea in several compartments of the aquatic cycle. Environ Int. 2014;70:203–12.  https://doi.org/10.1016/j.envint.2014.05.008.CrossRefPubMedGoogle Scholar
  6. 6.
    ChemAxon. https://chemicalize.com/. Accessed September 2019.
  7. 7.
    Scheurer M, Nödler K, Freeling F, Janda J, Happel O, Riegel M, et al. Small, mobile, persistent: trifluoroacetate in the water cycle – overlooked sources, pathways, and consequences for drinking water supply. Water Res. 2017;126:460–71.  https://doi.org/10.1016/j.watres.2017.09.045.CrossRefPubMedGoogle Scholar
  8. 8.
    EuropeanCommission (2018) Proposal for a DIRECTIVE OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL on the quality of water intended for human consumption (recast). 2017/0332(COD). Brussels.Google Scholar
  9. 9.
    Schulze S, Zahn D, Montes R, Rodil R, Quintana JB, Knepper TP, et al. Occurrence of emerging persistent and mobile organic contaminants in European water samples. Water Res. 2019;153:80–90.  https://doi.org/10.1016/j.watres.2019.01.008.CrossRefPubMedGoogle Scholar
  10. 10.
    Montes R, Aguirre J, Vidal X, Rodil R, Cela R, Quintana JB. Screening for polar chemicals in water by trifunctional mixed-mode liquid chromatography–high resolution mass spectrometry. Environ Sci Technol. 2017;51(11):6250–9.  https://doi.org/10.1021/acs.est.6b05135.CrossRefPubMedGoogle Scholar
  11. 11.
    Gago-Ferrero P, Schymanski EL, Bletsou AA, Aalizadeh R, Hollender J, Thomaidis NS. Extended suspect and non-target strategies to characterize emerging polar organic contaminants in raw wastewater with LC-HRMS/MS. Environ Sci Technol. 2015;49(20):12333–41.  https://doi.org/10.1021/acs.est.5b03454.CrossRefPubMedGoogle Scholar
  12. 12.
    Zhang K, Liu X. Mixed-mode chromatography in pharmaceutical and biopharmaceutical applications. J Pharm Biomed Anal. 2016;128:73–88.  https://doi.org/10.1016/j.jpba.2016.05.007.CrossRefPubMedGoogle Scholar
  13. 13.
    McCalley DV. Understanding and manipulating the separation in hydrophilic interaction liquid chromatography. J Chromatogr A. 2017;1523:49–71.  https://doi.org/10.1016/j.chroma.2017.06.026.CrossRefPubMedGoogle Scholar
  14. 14.
    Alpert AJ. Effect of salts on retention in hydrophilic interaction chromatography. J Chromatogr A. 2018;1538:45–53.  https://doi.org/10.1016/j.chroma.2018.01.038.CrossRefPubMedGoogle Scholar
  15. 15.
    Teutenberg T, Tuerk J, Holzhauser M, Kiffmeyer TK (2006) Evaluation of column bleed by using an ultraviolet and a charged aerosol detector coupled to a high-temperature liquid chromatographic system. J Chromatogr A 1119 (1):197–201. doi: https://doi.org/10.1016/j.chroma.2005.12.011.CrossRefGoogle Scholar
  16. 16.
    Wells GJ. Charge control for ionic charge accumulation devices. US Patent No. 2009;7:629,575.Google Scholar
  17. 17.
    Time-of-flight mass spectrometry - technical overview (2011). Agilent Technologie, Inc., USA.Google Scholar
  18. 18.
    Scherrer RA, Howard SM. Use of distribution coefficients in quantitative structure-activity relations. J Med Chem. 1977;20(1):53–8.  https://doi.org/10.1021/jm00211a010.CrossRefPubMedGoogle Scholar
  19. 19.
    Arp HPH, Brown TN, Berger U, Hale SE. Ranking REACH registered neutral, ionizable and ionic organic chemicals based on their aquatic persistency and mobility. Environ Sci Process Impacts. 2017;19(7):939–55.  https://doi.org/10.1039/C7EM00158D.CrossRefPubMedGoogle Scholar
  20. 20.
    Nödler K, Happel O, Scheurer M, Storck FR, Brauch H-J (2018) Selektion von für die Wasserversorgung relevanten prioritären Stoffen und Erarbeitung einer Stoffliste. DVGW Deutscher Verein des Gas- und Wasserfaches e. V., Bonn.Google Scholar
  21. 21.
    Bantscheff M, Schirle M, Sweetman G, Rick J, Kuster B. Quantitative mass spectrometry in proteomics: a critical review. Anal Bioanal Chem. 2007;389(4):1017–31.  https://doi.org/10.1007/s00216-007-1486-6.CrossRefPubMedGoogle Scholar
  22. 22.
    Ipsen A, Ebbels TMD. Orders of magnitude extension of the effective dynamic range of TDC-based TOFMS data through maximum likelihood estimation. J Am Soc Mass Spectrom. 2014;25(10):1824–7.  https://doi.org/10.1007/s13361-014-0961-5.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Lagerwerf FM, van Dongen WD, Steenvoorden RJJM, Honing M, Jonkman JHG. Exploring the boundaries of bioanalytical quantitative LC–MS–MS. Trends Anal Chem. 2000;19(7):418–27.  https://doi.org/10.1016/S0165-9936(00)00009-1.CrossRefGoogle Scholar
  24. 24.
    Zimmer D. Introduction to quantitative liquid chromatography-tandem mass spectrometry (LC-MS-MS). Chromatographia. 2003;57(1):S325–32.  https://doi.org/10.1007/BF02492124.CrossRefGoogle Scholar
  25. 25.
    Funke J, Valkov V, Balsaa P, Schmidt TC Amidosulfonsäure - Quantifizierung eines kleinen, hochpolaren Moleküls mit Reversed-Phase-LC-MS-MS. Poster Jahrestagung der Wasserchemischen Gesellschaft 2019, Erfurt 27 - 29 Mai 2019 ISBN 978-3-947197-11-8.Google Scholar
  26. 26.
    Boulard L, Dierkes G, Ternes T. Utilization of large volume zwitterionic hydrophilic interaction liquid chromatography for the analysis of polar pharmaceuticals in aqueous environmental samples: benefits and limitations. J Chromatogr A. 2018;1535:27–43.  https://doi.org/10.1016/j.chroma.2017.12.023.CrossRefPubMedGoogle Scholar
  27. 27.
    Mihailova A, Lundanes E, Greibrokk T. Determination and removal of impurities in 2-D LC-MS of peptides. J Sep Sci. 2006;29(4):576–81.  https://doi.org/10.1002/jssc.200500496.CrossRefPubMedGoogle Scholar
  28. 28.
    Meier F, Geyer PE, Virreira Winter S, Cox J, Mann M. BoxCar acquisition method enables single-shot proteomics at a depth of 10,000 proteins in 100 minutes. Nat Methods. 2018;15(6):440–8.  https://doi.org/10.1038/s41592-018-0003-5.CrossRefPubMedGoogle Scholar
  29. 29.
    Keller BO, Sui J, Young AB, Whittal RM. Interferences and contaminants encountered in modern mass spectrometry. Anal Chim Acta. 2008;627(1):71–81.  https://doi.org/10.1016/j.aca.2008.04.043.CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2020

Authors and Affiliations

  • Bastian Schulze
    • 1
    • 2
  • Tobias Bader
    • 1
  • Wolfram Seitz
    • 1
    Email author
  • Rudi Winzenbacher
    • 1
  1. 1.Zweckverband LandeswasserversorgungLangenauGermany
  2. 2.School of ChemistryAalen University of Applied SciencesAalenGermany

Personalised recommendations