TiO2 nanotubes loaded with CdS nanocrystals as enhanced emitters of electrochemiluminescence: application to an assay for prostate-specific antigen

  • Panpan DaiEmail author
  • Chen Liu
  • Chenggen Xie
  • Jiajun Ke
  • Yong He
  • Liyun Wei
  • Lijuan Chen
  • Juncheng Jin
Research Paper


An enhanced cathodic electrochemiluminescence (ECL) assay for prostate-specific antigen (PSA) is developed based on the in situ activation of a semiconductor nanomaterial. An excellent ECL emitter (CdS/TiO2 nanotubes) was fabricated by the combination of TiO2 nanotubes (NTs) and thioglycolic acid-capped CdS nanocrystals (NCs). After the activation of the hydrogen peroxide-citric acid solution, the ECL signal was enhanced 265 times compared with that of the original TiO2 NT with H2O2 as co-reactant. For the ECL assay, activated CdS/TiO2 NTs were assembled with complementary DNA, PSA aptamer and probe DNA-functionalized SiO2@Pt nanoparticles (NPs) via DNA hybridization to form the detection platform. The SiO2@Pt NPs acted as ECL quencher of CdS/TiO2 NTs. In the presence of PSA, ECL increased after the release of pDNA-SiO2@Pt NPs because of the binding of PSA to the aptamer. An “off-on” ECL phenomenon appeared. The enhanced ECL signals were used for sensitive determination of PSA. The dynamic range was 0.001 to 50 ng mL−1 with a detection limit of 0.4 pg mL−1 (S/N = 3). This new approach conceivably paves the way for fabricating various other enhanced ECL emitter systems, with good application prospects in clinical practice.

Graphical abstract

The activated CdS/TiO2 nanotubes and SiO2@Pt nanoparticles were synthesized and used to develop an energy-transfer electrochemiluminescence analysis method with high sensitivity and anti-interference performance.


Coupled semiconductor nanomaterials Enhanced electrochemiluminescence In situ activation Aptamer SiO2@Pt nanoparticles 



This work was supported by the National Natural Science Foundation of China (Grant No. 21705119), Key projects of Natural Science Research of Anhui Province (KJ2017A410), the Science Technology Project of Anhui Province (1606c08229, 1808085QB44, 1804a09020087) and the Foundation of State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering (2017-K32). This work was also supported by the Domestic Visiting and Training Program for Outstanding Young Backbone Talents in Universities of Anhui Province (gxgnfx2019030).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no competing interests.

Ethical approval

All studies were approved by the Ethics Committee of West Anhui University. All people had given informed consent.

Supplementary material

216_2019_2365_MOESM1_ESM.pdf (216 kb)
ESM 1 (PDF 179 kb)


  1. 1.
    Li LL, Chen Y, Zhu JJ. Recent Advances in Electrochemiluminescence. Analysis Anal Chem. 2017;89:358–71.CrossRefGoogle Scholar
  2. 2.
    Hu LZ, Xu GB. Applications and trends in electrochemiluminescence. Chem Soc Rev. 2010;39:3275–304.CrossRefGoogle Scholar
  3. 3.
    Tian CY, Wang L, Luan F, Fu XL, Zhuang XM, Chen LX. A novel electrochemiluminescent emitter of europium hydroxide nanorods and its application in bioanalysis. Chem Commun. 2019;35:12479–82.CrossRefGoogle Scholar
  4. 4.
    Chen LC, Zeng XT, Dandapat A, Chi YW, Kin D. Installing logic gates in permeability controllable polyelectrolyte-carbon nitride films for detecting proteases and nucleases. Anal Chem. 2015;87:8851–7.CrossRefGoogle Scholar
  5. 5.
    Xin XY, Yang YY, Liu J, Wang XM, Zhou H, Yu B. Electrocatalytic reduction of a coreactant using a hemin–graphene–Au nanoparticle ternary composite for sensitive electrochemiluminescence cytosensing. RSC Adv. 2016;6:26203–9.CrossRefGoogle Scholar
  6. 6.
    Wen Q, Lu P, Yang P. A glassy carbon electrode modified with in-situ generated chromium-loaded CdS nanoprobes and heparin for ultrasensitive electrochemiluminescent determination of thrombin. Microchim Acta. 2016;183:123–32.CrossRefGoogle Scholar
  7. 7.
    Tian CY, Wang L, Luan F, Zhuang XM. An electrochemiluminescence sensor for the detection of prostate protein antigen based on the graphene quantum dots infilled TiO2 nanotube arrays. Talanta. 2019;191:103–8.CrossRefGoogle Scholar
  8. 8.
    Deng SY, Ju HX. Electrogenerated chemiluminescence of nanomaterials for bioanalysis. Analyst. 2013;138:43–61.CrossRefGoogle Scholar
  9. 9.
    Wu P, Hou XD, Xu JJ, Chen HY. Electrochemically generated versus photoexcited luminescence from semiconductor nanomaterials: bridging the valley between two worlds. Chem Rev. 2014;114:11027–59.CrossRefGoogle Scholar
  10. 10.
    Dai PP, Yu T, Shi HW, Xu JJ, Chen HY. A general strategy for enhancing electrochemiluminescence of semiconductor nanocrystals by hydrogen peroxide and potassium persulfate as dual-coreactants. Anal Chem. 2015;87:12372–9.CrossRefGoogle Scholar
  11. 11.
    Zhou H, Zhang YY, Liu J, Xu JJ, Chen HY. Efficient quenching of electrochemiluminescence from K-doped graphene-CdS: Eu NCs by G-quadruplex-hemin and target recycling-assisted amplification for ultrasensitive DNA biosensing. Chem Commun. 2013;49:2246–8.CrossRefGoogle Scholar
  12. 12.
    Liu SF, Zhang X, Yu YM, Zou GZ. A monochromatic electrochemiluminescence sensing strategy for dopamine with dual-stabilizers-capped CdSe quantum dots as emitters. Anal Chem. 2014;86:2784–8.CrossRefGoogle Scholar
  13. 13.
    Liang JS, Yang SL, Luo SL, Liu CB, Tang YH. Ultrasensitive electrochemiluminescent detection of pentachlorophenol using a multiple amplification strategy based on a hybrid material made from quantum dots, graphene, and carbon nanotubes. Microchim Acta. 2014;181:759–65.CrossRefGoogle Scholar
  14. 14.
    Li JX, Yang LX, Luo SL, Chen BB, Li J, Lin HL, et al. Polycyclic aromatic hydrocarbon detection by electrochemiluminescence generating Ag/TiO2 nanotubes. Anal Chem. 2010;82:7357–61.CrossRefGoogle Scholar
  15. 15.
    Wang CZ. E YF, Fan LZ. Yang SH CdS-Ag nanocomposite arrays: enhanced electro-chemiluminescence but quenched photoluminescence J Mater Chem. 2009;19:3841–6.Google Scholar
  16. 16.
    Deng SY, Lei JP, Huang Y, Yao XN, Ding L, Ju HX. Electrocatalytic reduction of coreactant by highly loaded dendrimer-encapsulated palladium nanoparticles for sensitive electrochemiluminescent immunoassay. Chem Commun. 2012;48:9159–61.CrossRefGoogle Scholar
  17. 17.
    Zhang YY, Zhou H, Wu P, Zhang HR, Xu JJ, Chen HY. In situ activation of CdS electrochemiluminescence film and its application in H2S detection. Anal Chem. 2014;86:8657–64.CrossRefGoogle Scholar
  18. 18.
    Zhao WW, Chen R, Dai PP, Li XX, Xu JJ, Chen HY. A general strategy for photoelectrochemical immunoassay using an enzyme label combined with a CdS quantum dot/TiO2 nanoparticle composite electrode. Anal Chem. 2014;86:11513–6.CrossRefGoogle Scholar
  19. 19.
    Zhao WW, Ma ZY, Yan DY, Xu JJ, Chen HY. In situ enzymatic ascorbic acid production as electron donor for CdS quantum dots equipped TiO2 nanotubes: a general and efficient approach for new photoelectrochemical immunoassay. Anal Chem. 2012;84:10518–21.CrossRefGoogle Scholar
  20. 20.
    Jiang CL, Wang H, Lin SZ, Ma F, Wang YQ, Ji HB. Low-temperature photothermal catalytic oxidation of toluene on a core/shell SiO2@Pt@ZrO2 Nanostructure. Ind Eng Chem Res. 2019;58:16450–8.CrossRefGoogle Scholar
  21. 21.
    Yang DP, Luo WJ, Huang YD, Huang SM. Facile synthesis of monodispersed SiO2@Fe3O4 core–shell colloids for printing and three-dimensional coating with noniridescent structural colors. ACS Omega. 2019;4:528–34.CrossRefGoogle Scholar
  22. 22.
    Deng L, Shan Y, Xu JJ, Chen HY. Electrochemiluminescence behaviors of Eu3+-doped CdS nanocrystals film in aqueous solution. Nanoscale. 2012;4:831–6.CrossRefGoogle Scholar
  23. 23.
    Ding SN, Xu JJ, Chen HY. Enhanced solid-state electrochemiluminescence of CdS nanocrystals composited with carbon nanotubes in H2O2 solution. Chem Commun. 2006:363–3.Google Scholar
  24. 24.
    Tian CY, Zhao WW, Wang J, Xu JJ, Chen HY. Amplified quenching of electrochemiluminescence from CdS sensitized TiO2 nanotubes by CdTe-carbon nanotube composite for detection of prostate protein antigen in serum. Analyst. 2012;137:3070–5.CrossRefGoogle Scholar
  25. 25.
    Li WP, Dai WJ, Ge L, Ge SG, Yan M, Yu JH. Electropolymerized poly(3,4-ethylendioxythiophene)/graphene composite film and its application in quantum dots electrochemiluminescence immunoassay. J Inorg Organomet Polym. 2013;23:719–25.CrossRefGoogle Scholar
  26. 26.
    Liu F, Deng WP, Zhang Y, Ge SG, Yu JH, Song XR. Application of ZnO quantum dots dotted carbon nanotube for sensitive electrochemiluminescence immunoassay based on simply electrochemical reduced Pt/Au alloy and a disposable device. Anal Chim Acta. 2014;818:46–53.CrossRefGoogle Scholar
  27. 27.
    Xu SJ, Lu Y, Wang TH, Li JH. Positive potential operation of a cathodic electrogenerated chemiluminescence immunosensor based on luminol and graphene for cancer biomarker detection. Anal Chem. 2010;83:3817–23.CrossRefGoogle Scholar
  28. 28.
    Wang YZ, Zhao W, Dai PP, Lu HJ, Xu JJ, Pan J, et al. Spatial-resolved electrochemiluminescence ratiometry based on bipolar electrode for bioanalysis. Biosens Bioelectron. 2016;86:683–9.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Panpan Dai
    • 1
    Email author
  • Chen Liu
    • 1
  • Chenggen Xie
    • 1
  • Jiajun Ke
    • 1
  • Yong He
    • 1
  • Liyun Wei
    • 1
  • Lijuan Chen
    • 1
  • Juncheng Jin
    • 1
  1. 1.Key Laboratory of Biomimetic Sensor and Detecting Technology of Anhui Province, School of Materials and Chemical EngineeringWest Anhui UniversityLu’anChina

Personalised recommendations