Advertisement

Measurement of natural variation of neurotransmitter tissue content in red harvester ant brains among different colonies

  • Mimi Shin
  • Daniel A. Friedman
  • Deborah M. Gordon
  • B. Jill VentonEmail author
Paper in Forefront
Part of the following topical collections:
  1. Female Role Models in Analytical Chemistry

Abstract

Colonies of the red harvester ant, Pogonomyrmex barbatus, regulate foraging activity based on food availability and local conditions. Colony variation in foraging behavior is thought to be linked to biogenic amine signaling and metabolism. Measurements of differences in neurotransmitters have not been made among ant colonies in a natural environment. Here, for the first time, we quantified tissue content of 4 biogenic amines (dopamine, serotonin, octopamine, and tyramine) in single forager brains from 9 red harvester ant colonies collected in the field. Capillary electrophoresis coupled with fast-scan cyclic voltammetry (CE-FSCV) was used to separate and detect the amines in individual ant brains. Low levels of biogenic amines were detected using field-amplified sample stacking by preparing a single brain tissue sample in acetonitrile and perchloric acid. The method provides low detection limits: 1 nM for dopamine, 2 nM for serotonin, 5 nM for octopamine, and 4 nM for tyramine. Overall, the content of dopamine (47 ± 9 pg/brain) was highest, followed by octopamine (36 ± 10 pg/brain), serotonin (20 ± 4 pg/brain), and tyramine (14 ± 3 pg/brain). Relative standard deviations were high, but there was less variation within a colony than among colonies, so the neurotransmitter content of each colony might change with environmental conditions. This study demonstrates that CE-FSCV is a useful method for investigating natural variation in neurotransmitter content in single ant brains and could be useful for future studies correlating tissue content with colony behavior such as foraging.

Graphical abstract

Keywords

Neurotransmitters tissue content Pogonomyrmex barbatus/red harvester ants Dopamine Serotonin Octopamine Tyramine Capillary electrophoresis/electrophoresis Fast-scan cyclic voltammetry Carbon-Fiber microelectrode 

Notes

Funding information

This research was funded by NIH R01MH085159 to the Venton Lab and a grant from the Stanford Neurosciences Institute to the Gordon lab.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Barron AB, Søvik E, Cornish JL. The roles of dopamine and related compounds in reward-seeking behavior across animal phyla. Front Behav Neurosci. 2010;4:163.CrossRefGoogle Scholar
  2. 2.
    Gordon DM. The rewards of restraint in the collective regulation of foraging by harvester ant colonies. Nature. 2013;498(7452):91–3.CrossRefGoogle Scholar
  3. 3.
    Jandt J, Gordon D. The behavioral ecology of variation in social insects. Curr Opin Insect Sci. 2016;15:40–4.CrossRefGoogle Scholar
  4. 4.
    Friedman DA, Pilko A, Skowronska-Krawczyk D, Krasinska K, Parker JW, Hirsh J, et al. The role of dopamine in the collective regulation of foraging in harvester ants. iScience. 2018;8:283–94.CrossRefGoogle Scholar
  5. 5.
    Friedman DA, Gordon DM. Ant genetics: reproductive physiology, worker morphology, and behavior. Annu Rev Neurosci. 2016;39(1):41–56.CrossRefGoogle Scholar
  6. 6.
    Kamhi JF, Traniello JFA. Biogenic amines and collective organization in a superorganism: neuromodulation of social behavior in ants. Brain Behav Evol. 2013;82(4):220–36.CrossRefGoogle Scholar
  7. 7.
    Kamhi JF, Arganda S, Moreau CS, Traniello JFA. Origins of aminergic regulation of behavior in complex insect social systems. Front Syst Neurosci. 2017;11:74.CrossRefGoogle Scholar
  8. 8.
    Szczuka A, Korczyńska J, Wnuk A, Symonowicz B, Gonzalez Szwacka A, Mazurkiewicz P, Kostowski W, Godzinska. The effects of serotonin, dopamine, octopamine and tyramine on behavior of workers of the ant Formica polyctena during dyadic aggression tests. Acta Neurobiol Exp 2013;73(4):495–520.Google Scholar
  9. 9.
    Entler BV, Cannon JT, Seid MA. Morphine addiction in ants: a new model for self-administration and neurochemical analysis. J Exp Biol. 2016;219(Pt 18):2865–9.CrossRefGoogle Scholar
  10. 10.
    Wada-Katsumata A, Yamaoka R, Aonuma H. Social interactions influence dopamine and octopamine homeostasis in the brain of the ant Formica japonica. J Exp Biol. 2011;214(10):1707–13.CrossRefGoogle Scholar
  11. 11.
    Cuvillier-Hot Alain Lenoir V. Biogenic amine levels, reproduction and social dominance in the queenless ant Streblognathus peetersi. Naturwissenschaften. 2006;93:149–53.CrossRefGoogle Scholar
  12. 12.
    Okada Y, Sasaki K, Miyazaki S, Shimoji H, Tsuji K, Miura T. Social dominance and reproductive differentiation mediated by dopaminergic signaling in a queenless ant. J Exp Biol. 2015;218(Pt 7):1091–8.CrossRefGoogle Scholar
  13. 13.
    Fang H, Pajski ML, Ross AE, Venton BJ. Quantitation of dopamine, serotonin and adenosine content in a tissue punch from a brain slice using capillary electrophoresis with fast-scan cyclic voltammetry detection. Anal Methods. 2013;5(11):2704–11.CrossRefGoogle Scholar
  14. 14.
    Fang H, Vickrey TL, Venton BJ. Analysis of biogenic amines in a single Drosophila larva brain by capillary electrophoresis with fast-scan cyclic voltammetry detection. Anal Chem. 2011;83(6).CrossRefGoogle Scholar
  15. 15.
    Denno ME, Privman E, Borman RP, Wolin DC, Venton BJ. Quantification of histamine and carcinine in Drosophila melanogaster tissues. ACS Chem Neurosci. 2016;7(3):407–14.CrossRefGoogle Scholar
  16. 16.
    Denno ME, Privman E, Venton BJ. Analysis of neurotransmitter tissue content of drosophila melanogaster in different life stages. ACS Chem Neurosci. 2015;6(1):117–23.CrossRefGoogle Scholar
  17. 17.
    Berglund EC, Kuklinski NJ, Karagunduz E, Ucar K, Hanrieder J, Ewing AG. Freeze-drying as sample preparation for micellar electrokinetic capillary chromatography-electrochemical separations of neurochemicals in Drosophila brains. Anal Chem. 2013;85(5):2841–6.CrossRefGoogle Scholar
  18. 18.
    Kuklinski NJ, Berglund EC, Engelbrektsson J, Ewing AG. Biogenic amines in microdissected brain regions of Drosophila melanogaster measured with micellar electrokinetic capillary chromatography-electrochemical detection. Anal Chem. 2010;82(18):7729–35.CrossRefGoogle Scholar
  19. 19.
    Omiatek DM, Santillo MF, Heien ML, Ewing AG. Hybrid capillary-microfluidic device for the separation, lysis, and electrochemical detection of vesicles. Anal Chem. 2009;81(6):2294–302.CrossRefGoogle Scholar
  20. 20.
    Ream PJ, Suljak SW, Ewing AG, Han K-A. Micellar electrokinetic capillary chromatography- electrochemical detection for analysis of biogenic amines in Drosophila melanogaster. Anal Chem. 2003;75(16):3972–8.CrossRefGoogle Scholar
  21. 21.
    Pyakurel P, Shin M, Venton BJ. Nicotinic acetylcholine receptor (nAChR) mediated dopamine release in larval Drosophila melanogaster. Neurochem Int. 2018;114:33–41.CrossRefGoogle Scholar
  22. 22.
    Shin M, Field TM, Stucky CS, Furgurson MN, Johnson MA. Ex vivo measurement of electrically evoked dopamine release in zebrafish whole brain. ACS Chem Neurosci. 2017;8(9):1880–8.CrossRefGoogle Scholar
  23. 23.
    Shin M, Copeland JM, Venton BJ. Drosophila as a model system for neurotransmitter measurements. ACS Chem Neurosci. 2018;9(8):1872–83.CrossRefGoogle Scholar
  24. 24.
    Shin M, Venton BJ. Electrochemical measurements of acetylcholine-stimulated dopamine release in adult Drosophila melanogaster brains. Anal Chem. 2018;90(17):10318–25.CrossRefGoogle Scholar
  25. 25.
    Cao Q, Puthongkham P, Venton BJ. Review: new insights into optimizing chemical and 3D surface structures of carbon electrodes for neurotransmitter detection. Anal Methods. 2019;11(3):247–61.CrossRefGoogle Scholar
  26. 26.
    Ganesana M, Lee ST, Wang Y, Venton BJ. Analytical techniques in neuroscience: recent advances in imaging, separation, and electrochemical methods. Anal Chem. 2017;89(1):314–41.CrossRefGoogle Scholar
  27. 27.
    Shin M, Wang Y, Borgus JR, Venton BJ. Electrochemistry at the synapse. Annu Rev Anal Chem. 2019 12;12(1):297–321.CrossRefGoogle Scholar
  28. 28.
    Ingram KK, Pilko A, Heer J, Gordon DM. Colony life history and lifetime reproductive success of red harvester ant colonies. Coulson T, editor. J Anim Ecol 2013;82(3):540–550.Google Scholar
  29. 29.
    Cooper SE, Venton BJ. Fast-scan cyclic voltammetry for the detection of tyramine and octopamine. Anal Bioanal Chem. 2009;394(1):329–36.CrossRefGoogle Scholar
  30. 30.
    Jackson BP, Dietz SM, Wightman RM. Fast-scan cyclic voltammetry of 5-hydroxytryptamine. Anal Chem. 1995;67(6):1115–20.CrossRefGoogle Scholar
  31. 31.
    Hashemi P, Dankoski EC, Petrovic J, Keithley RB, Wightman RM. Voltammetric detection of 5-hydroxytryptamine release in the rat brain. Anal Chem. 2009;81(22):9462–71.CrossRefGoogle Scholar
  32. 32.
    Hardie SL, Hirsh J. An improved method for the separation and detection of biogenic amines in adult Drosophila brain extracts by high performance liquid chromatography. J Neurosci Methods. 2006;153(2):243–9.CrossRefGoogle Scholar
  33. 33.
    Aonuma H, Watanabe T. Changes in the content of brain biogenic amine associated with early colony establishment in the queen of the ant, Formica japonica. Gronenberg W, editor. PLoS One. 2012;7(8):e43377.CrossRefGoogle Scholar
  34. 34.
    Mannino G, Abdi G, Emilio Maffei M, Barbero F. Origanum vulgare terpenoids modulate Myrmica scabrinodis brain biogenic amines and ant behaviour. PLoS One. 2018;13(12):e0211749.CrossRefGoogle Scholar
  35. 35.
    Cook CN, Brent CS, Breed MD. Octopamine and tyramine modulate the thermoregulatory fanning response in honey bees (Apis mellifera). J Exp Biol. 2017;220(10):1925–30.CrossRefGoogle Scholar
  36. 36.
    Brenes JC, Fornaguera J. The effect of chronic fluoxetine on social isolation-induced changes on sucrose consumption, immobility behavior, and on serotonin and dopamine function in hippocampus and ventral striatum. Behav Brain Res. 2009;198(1):199–205.CrossRefGoogle Scholar
  37. 37.
    Meiser J, Weindl D, Hiller K. Complexity of dopamine metabolism. Cell Commun Signal. 2013;11(1):34.CrossRefGoogle Scholar
  38. 38.
    Bauknecht P, Jékely G. Ancient coexistence of norepinephrine, tyramine, and octopamine signaling in bilaterians. BMC Biol. 2017;15(1):6.CrossRefGoogle Scholar
  39. 39.
    Sloley B. Metabolism of monoamines in invertebrates: the relative importance of monoamine oxidase in different phyla. Neurotoxicology. 2004;25(1–2):175–83.CrossRefGoogle Scholar
  40. 40.
    Yamamoto S, Seto ES. Dopamine dynamics and signaling in Drosophila: an overview of genes, drugs and behavioral paradigms. Exp Anim. 2014;63(2):107–19.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2020

Authors and Affiliations

  • Mimi Shin
    • 1
  • Daniel A. Friedman
    • 2
  • Deborah M. Gordon
    • 2
  • B. Jill Venton
    • 1
    Email author
  1. 1.Department of ChemistryUniversity of VirginiaCharlottesvilleUSA
  2. 2.Department of BiologyStanford UniversityPalo AltoUSA

Personalised recommendations