Advertisement

Analytical and Bioanalytical Chemistry

, Volume 412, Issue 5, pp 1151–1158 | Cite as

A fluorescent nanosphere-based immunochromatography test strip for ultrasensitive and point-of-care detection of tetanus antibody in human serum

  • Juan Chen
  • Hong-Min MengEmail author
  • Ying An
  • Juanzu Liu
  • Ran Yang
  • Lingbo Qu
  • Zhaohui Li
Research Paper
  • 130 Downloads

Abstract

Tetanus still possesses a high infection risk and leads a number of human deaths in poor nations. Point-of-care and ultrasensitive detection of tetanus antibody levels in serum is the key to decrease the risk of tetanus infection and improve the health of people. In this work, by using ultra bright fluorescent nanospheres (FNs) and portable lateral flow test strip (LFTS), a point-of-care and ultrasensitive sensing method has been developed for the detection of tetanus antibodies in human serum. This assay works quite well for tetanus antibodies in the concentration range from 0.0002 to 0.0220 IU/mL with a low detection limit of 0.00011 IU/mL, which is 100-fold lower than conventional gold-based LFTSs. The high sensitivity makes this method suitable for use to detect the low-abundant target in real samples. Besides, this cost-effective FN-based LFTS assay possesses good selectivity, high accuracy, and satisfactory reliability, which holds great potential as a robust candidate for routine medical diagnosis and rapid home testing.

Graphical abstract

Keywords

Tetanus antibody Fluorescent nanospheres Lateral flow test strips Point-of-care testing Ultrasensitive detection 

Notes

Funding information

This work was supported by National Natural Science Foundation of China (21974125, 21605038, and 21877027), China Postdoctoral Science Foundation (2019T120623 and 2016M602245), and the Key Scientific Research Project in Universities of Henan Province (19A150048 and 16A150013).

Compliance with ethical standards

The serum samples were obtained by the First Affiliated Hospital of Zhengzhou University, approved by Life-Science Ethics Review Committee of Zhengzhou University.

Competing interests

The authors declare that they have no competing interest.

Supplementary material

216_2019_2343_MOESM1_ESM.docx (761 kb)
ESM 1 (DOCX 760 kb)

References

  1. 1.
    Vandelaer J, Birmingham M, Gasse F, Kurian M, Shaw C, Garnier S. Tetanus in developing countries: an update on the Maternal and Neonatal Tetanus Elimination Initiative. Vaccine. 2003;21(24):3442–5.CrossRefGoogle Scholar
  2. 2.
    Gall SA, Myers J, Pichichero M. Maternal immunization with tetanus–diphtheria–pertussis vaccine: effect on maternal and neonatal serum antibody levels. Am J Obstet Gyneco. 2011;204(4):334.e1–5.CrossRefGoogle Scholar
  3. 3.
    Sheridan PA, Paich HA, Handy J, Karlsson EA, Hudgens MG, Sammon AB, et al. Obesity is associated with impaired immune response to influenza vaccination in humans. Int J Obesity. 2011;36:1072–7.CrossRefGoogle Scholar
  4. 4.
    Jain S, Chattopadhyay S, Jackeray R, Zainul Abid CKV, Kumar M, Singh H. Detection of anti-tetanus toxoid antibody on modified polyacrylonitrile fibers. Talanta. 2010;82(5):1876–83.CrossRefGoogle Scholar
  5. 5.
    King CA, Spellerberg MB, Zhu D, Rice J, Sahota SS, Thompsett AR, et al. DNA vaccines with single-chain Fv fused to fragment C of tetanus toxin induce protective immunity against lymphoma and myeloma. Nat Med. 1998;4:1281–6.CrossRefGoogle Scholar
  6. 6.
    Ramakrishnan G, Pedersen K, Guenette D, Sink J, Haque R, Petri WA, et al. Utility of recombinant fragment C for assessment of anti-tetanus antibodies in plasma. Diagn Micr Infec Dis. 2015;82(1):11–3.CrossRefGoogle Scholar
  7. 7.
    Roper MH, Vandelaer JH, Gasse FL. Maternal and neonatal tetanus. Lancet. 2007;370(9603):1947–59.CrossRefGoogle Scholar
  8. 8.
    Schröder JP, Kuhlmann WD. Detection of tetanus antitoxin using Eu(3+)-labeled anti-human immunoglobulin G monoclonal antibodies in a time-resolved fluorescence immunoassay. J Clin Microbiol. 1991;29(7):1504–7.CrossRefGoogle Scholar
  9. 9.
    Maple PAC, Jones CS, Andrews NJ. Time resolved fluorometric immunoassay, using europium labelled antihuman IgG, for the detection of human tetanus antitoxin in serum. J Clin Patho. 2001;54(10):812–5.CrossRefGoogle Scholar
  10. 10.
    Gupta RK, Maheshwari SC, Singh H. The titration of tetanus antitoxin II: a comparative evaluation of the indirect haemagglutination and toxin neutralization tests. J Biol Stand. 1984;12(2):137–43.CrossRefGoogle Scholar
  11. 11.
    Susković F. Determination of immune antitetanus antibodies using hemagglutination tests. Lijec Vjesn. 1993;115(9–10):273–9.PubMedGoogle Scholar
  12. 12.
    Peel MM. Measurement of tetanus antitoxin I. Indirect haemagglutination. J Biol Standard. 1980;8(3):177–89.CrossRefGoogle Scholar
  13. 13.
    Herr AE, Throckmorton DJ, Davenport AA, Singh AK. On-chip native gel electrophoresis-based immunoassays for tetanus antibody and toxin. Anal Chem. 2005;77(2):585–90.CrossRefGoogle Scholar
  14. 14.
    Habermann E, Wiegand H. A rapid and simple radioimmunological procedure for measuring low concentrations of tetanus antibodies. N-S Arch Pharmacol. 1973;276(3):321–6.CrossRefGoogle Scholar
  15. 15.
    Golberg A, Yarmush ML, Konry T. Picoliter droplet microfluidic immunosorbent platform for point-of-care diagnostics of tetanus. Microchim Acta. 2013;180(9):855–60.CrossRefGoogle Scholar
  16. 16.
    Liu J, Ji D, Meng H, Zhang L, Wang J, Huang Z, et al. A portable fluorescence biosensor for rapid and sensitive glutathione detection by using quantum dots-based lateral flow test strip. Sensor Actuat B-Chem. 2018;262:486–92.CrossRefGoogle Scholar
  17. 17.
    Chen J, Huang Z, Meng H, Zhang L, Ji D, Liu J, et al. A facile fluorescence lateral flow biosensor for glutathione detection based on quantum dots-MnO2 nanocomposites. Sensor Actuat B-Chem. 2018;260:770–7.CrossRefGoogle Scholar
  18. 18.
    Li Z, Wang Y, Wang J, Tang Z, Pounds JG, Lin Y. Rapid and sensitive detection of protein biomarker using a portable fluorescence biosensor based on quantum dots and a lateral flow test strip. Anal Chem. 2010;82(16):7008–14.CrossRefGoogle Scholar
  19. 19.
    Liu J, Wang J, Li Z, Meng H, Zhang L, Wang H, et al. A lateral flow assay for the determination of human tetanus antibody in whole blood by using gold nanoparticle labeled tetanus antigen. Microchim Acta. 2018;185(2):110.CrossRefGoogle Scholar
  20. 20.
    Wang J, Meng H-M, Chen J, Liu J, Zhang L, Qu L, et al. Quantum dot-based lateral flow test strips for highly sensitive detection of the tetanus antibody. ACS Omega. 2019;4(4):6789–95.CrossRefGoogle Scholar
  21. 21.
    Swierczewska M, Liu G, Lee S, Chen X. High-sensitivity nanosensors for biomarker detection. Chem Soc Rev. 2012;41(7):2641–55.CrossRefGoogle Scholar
  22. 22.
    Zhang J, Lv X, Feng W, Li X, Li K, Deng Y. Aptamer-based fluorometric lateral flow assay for creatine kinase MB. Microchim Acta. 2018;185(8):364.CrossRefGoogle Scholar
  23. 23.
    Ren M, Xu H, Huang X, Kuang M, Xiong Y, Xu H, et al. Immunochromatographic assay for ultrasensitive detection of aflatoxin B1 in maize by highly luminescent quantum dot beads. ACS Appl Mater Interfaces. 2014;6(16):14215–22.CrossRefGoogle Scholar
  24. 24.
    Hu J, Jiang Y-Z, Wu L-L, Wu Z, Bi Y, Wong G, et al. Dual-signal readout nanospheres for rapid point-of-care detection of Ebola virus glycoprotein. Anal Chem. 2017;89(24):13105–11.CrossRefGoogle Scholar
  25. 25.
    Hu J, Zhang Z-L, Wen C-Y, Tang M, Wu L-L, Liu C, et al. Sensitive and quantitative detection of C-reaction protein based on immunofluorescent nanospheres coupled with lateral flow test strip. Anal Chem. 2016;88(12):6577–84.CrossRefGoogle Scholar
  26. 26.
    Ouyang S, Zhang Z, He T, Li P, Zhang Q, Chen X, et al. An on-site, ultra-sensitive, quantitative sensing method for the determination of total aflatoxin in peanut and rice based on quantum dot nanobeads strip. Toxins. 2017;9(4):137.CrossRefGoogle Scholar
  27. 27.
    Qazi S, Schlicksup CJ, Rittichier J, VanNieuwenhze MS, Zlotnick A. An assembly-activating site in the hepatitis B virus capsid protein can also trigger disassembly. ACS Chem Biol. 2018;13(8):2114–20.CrossRefGoogle Scholar
  28. 28.
    Li X, Li W, Yang Q, Gong X, Guo W, Dong C, et al. Rapid and quantitative detection of prostate specific antigen with a quantum dot nanobeads-based immunochromatography test strip. ACS Appl Mater Interfaces. 2014;6(9):6406–14.CrossRefGoogle Scholar
  29. 29.
    Kenrick KG, Wallace RC, Ismay SL. An improved assay for human tetanus anti-toxin and its use in the accession of human plasma for the production of high-titre tetanus immunoglobulin. Vox Sang. 1990;58(1):35–9.CrossRefGoogle Scholar
  30. 30.
    Ochoa R, Martínez JC, Fajardo EM, Alvarez E, Estrada E, García AM, et al. Validación deun ELISA para la cuantificación de antitoxina tetánica en suero humano. Vaccimonitor. 2000;9(4):31–7.Google Scholar
  31. 31.
    Aggerbecka H, Nørgaard-Pedersenb B, Herona I. Simultaneous quantitation of diphtheria and tetanus antibodies by double antigen, time-resolved fluorescence immunoassay. J Immunol Methods. 1996;190(2):171–83.CrossRefGoogle Scholar
  32. 32.
    Raeisi S, Molaeirad A, Sadri M, Nejad HR. Detection of anti-tetanus toxoid monoclonal antibody by using modified polycarbonate surface. Plasmonics. 2018;13(5):1555–67.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Juan Chen
  • Hong-Min Meng
    • 1
    Email author
  • Ying An
    • 1
  • Juanzu Liu
    • 1
  • Ran Yang
    • 1
  • Lingbo Qu
    • 1
  • Zhaohui Li
    • 1
  1. 1.College of Chemistry, Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical ApplicationsZhengzhou UniversityZhengzhouChina

Personalised recommendations