Deep eutectic solvent–based headspace single-drop microextraction for the quantification of terpenes in spices

  • Zélie Triaux
  • Hugues Petitjean
  • Eric Marchioni
  • Maria Boltoeva
  • Christophe MarcicEmail author
Research Paper


Deep eutectic solvents (DESs) were investigated as extracting solvent for headspace single-drop microextraction (HS-SDME). The extraction efficiency of 10 DESs mainly composed of tetrabutylammonium bromide (N4444Br) and long-chain alcohols was evaluated for the extraction of terpenes from six spices (cinnamon, cumin, fennel, clove, thyme, and nutmeg). The DES composed of N4444Br and dodecanol at a molar ratio of 1:2 showed the highest extraction efficiency and was selected to conduct the extractions of terpenes in the rest of the study. HS-SDME was optimized by design of experiments. Only two parameters from the four studied showed a significant influence on the efficiency of the method: the extraction time and the extraction temperature. The optimal extraction conditions were determined by response surface methodology. All extracts were analyzed by gas chromatography coupled to mass spectrometry (GC-MS). More than 40 terpenes were extracted and identified in nutmeg, the richest extract in terpenes in this study. Quantitative analysis based on 29 standards was conducted for each extract. Good linearity was obtained for all standards (R2 > 0.99) in the interval of 1 to 500 μg/g. Limits of quantification ranged from 0.47 μg/g (borneol) to 86.40 μg/g (α-farnesene) with more than half of the values under 2 μg/g. HS-SDME is simple, rapid, and cheap compared with conventional extraction methods. The use of DESs makes this extraction method “greener” and it was shown that DESs can be suitable solvents for the extraction of bioactive compounds from plants.


Deep eutectic solvents Microextraction Chemometric Terpenes GC-MS 


Funding information

This work has been financially supported by “Association Nationale Recherche Technologie” with the CIFRE Contract No. 2016/0447.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest

Supplementary material

216_2019_2317_MOESM1_ESM.pdf (223 kb)
ESM 1 (PDF 222 kb)


  1. 1.
    Newman DJ, Cragg GM, Kingston DGI. Natural products as pharmaceuticals and sources for lead structures. In: The practice of medicinal chemistry, Second Edi. Elsevier Inc., 2003; pp 91–109.Google Scholar
  2. 2.
    Newman DJ, Cragg GM. Natural products as sources of new drugs over the last 25 years. J Nat Prod. 2007;70:461–77.CrossRefGoogle Scholar
  3. 3.
    Tholl D. Terpene synthases and the regulation, diversity and biological roles of terpene metabolism. Curr Opin Plant Biol. 2006;9:1–8.CrossRefGoogle Scholar
  4. 4.
    Croteau R, Kutchan TM, Lewis NL. Natural products (secondary metabolites). In: Biochemistry and molecular biology of plants. 2000;, pp 1250–1318.Google Scholar
  5. 5.
    Vavitsas K, Fabris M, Vickers CE. Terpenoid metabolic engineering in photosynthetic microorganisms. Genes (Basel). 2018;9:1–19.CrossRefGoogle Scholar
  6. 6.
    De Almeida RN, De Fátima AM, Maior FNS, De Sousa DP. Essential oils and their constituents: anticonvulsant activity. Molecules. 2011;16:2726–42.CrossRefGoogle Scholar
  7. 7.
    Bart H-J. Extraction of natural products from plants – an introduction. In: Industrial scale natural products extraction. 2011;, pp 1–25.Google Scholar
  8. 8.
    Kozioł A, Stryjewska A, Librowski T, Sałat K, Gaweł M, Moniczewski A, et al. An overview of the pharmacological properties and potential applications of natural monoterpenes. Mini-Reviews Med Chem. 2014;14:1156–68.CrossRefGoogle Scholar
  9. 9.
    Fonsêca DV, Salgado PRR, de Aragão Neto HC, Golzio AMFO, Caldas Filho MRD, Melo CGF, et al. Ortho-eugenol exhibits anti-nociceptive and anti-inflammatory activities. Int Immunopharmacol. 2016;38:402–8.CrossRefGoogle Scholar
  10. 10.
    Trombetta D, Castelli F, Sarpietro MG, Venuti V, Cristani M, Daniele C, et al. Mechanisms of antibacterial action of three monoterpenes. Antimicrob Agents Chemother. 2005;49:2474–8.CrossRefGoogle Scholar
  11. 11.
    Salakhutdinov NF, Volcho KP, Yarovaya OI. Monoterpenes as a renewable source of biologically active compounds. Pure Appl Chem. 2017;89:1105–17.CrossRefGoogle Scholar
  12. 12.
    Yano S, Suzuki Y, Yuzurihara M, Kase Y, Takeda S, Watanabe S, et al. Antinociceptive effect of methyleugenol on formalin-induced hyperalgesia in mice. Eur J Pharmacol. 2006;553:99–103.CrossRefGoogle Scholar
  13. 13.
    Yang C, Wang J, Li D. Microextraction techniques for the determination of volatile and semivolatile organic compounds from plants: a review. Anal Chim Acta. 2013;799:8–22.CrossRefGoogle Scholar
  14. 14.
    Theis AL, Waldack AJ, Hansen SM, Jeannot MA. Headspace solvent microextraction. Anal Chem. 2001;73:5651–4.CrossRefGoogle Scholar
  15. 15.
    Wardencki W, Curyło J, Namieśnik J. Trends in solventless sample preparation techniques for environmental analysis. J Biochem Biophys Methods. 2007;70:275–88.CrossRefGoogle Scholar
  16. 16.
    Clark KD, Emaus MN, Varona M, Bowers AN, Anderson JL. Ionic liquids: solvents and sorbents in sample preparation. J Sep Sci. 2018;41:1–416.CrossRefGoogle Scholar
  17. 17.
    Zainal-Abidin MH, Hayyan M, Hayyan A, Jayakumar NS. New horizons in the extraction of bioactive compounds using deep eutectic solvents: a review. Anal Chim Acta. 2017;979:1–23.CrossRefGoogle Scholar
  18. 18.
    Abbott AP, Capper G, Davies DL, Rasheed RK, Tambyrajah V. Novel solvent properties of choline chloride urea mixtures. Chem Commun. 2003:70–1.Google Scholar
  19. 19.
    Zhang Q, De Oliveira VK, Royer S, François J. Deep eutectic solvents: syntheses, properties and applications. Chem Soc Rev. 2012;41:7108–46.CrossRefGoogle Scholar
  20. 20.
    Yousefi SM, Shemirani F, Ghorbanian SA. Enhanced headspace single drop microextraction method using deep eutectic solvent based magnetic bucky gels: application to the determination of volatile aromatic hydrocarbons in water and urine samples. J Sep Sci. 2018;41:966–74.CrossRefGoogle Scholar
  21. 21.
    Jeong KM, Jin Y, Yoo DE, Han SY, Kim EM, Lee J. One-step sample preparation for convenient examination of volatile monoterpenes and phenolic compounds in peppermint leaves using deep eutectic solvents. Food Chem. 2018;251:69–76.CrossRefGoogle Scholar
  22. 22.
    Su E, Yang M, Cao J, Lu C, Wang J, Cao F. Deep eutectic solvents as green media for efficient extraction of terpene trilactones from Ginkgo biloba leaves. J Liq Chromatogr Relat Technol. 2017;40:1–7.CrossRefGoogle Scholar
  23. 23.
    Cao J, Chen L, Li M, Cao F, Zhao L, Su E. Two-phase systems developed with hydrophilic and hydrophobic deep eutectic solvents for simultaneously extracting various bioactive compounds with different polarities. Green Chem. 2018;20:1879–86.CrossRefGoogle Scholar
  24. 24.
    Tang B, Bi W, Zhang H, Ho RK. Deep eutectic solvent-based HS-SME coupled with GC for the analysis of bioactive terpenoids in Chamaecyparis obtusa leaves. Chromatographia. 2014;77:373–7.CrossRefGoogle Scholar
  25. 25.
    Tang W, Dai Y, Row KH. Evaluation of fatty acid/alcohol-based hydrophobic deep eutectic solvents as media for extracting antibiotics from environmental water. Anal Bioanal Chem. 2018;410:7325–36.CrossRefGoogle Scholar
  26. 26.
    Candioti LV, De Zan MM, Cámara MS, Goicoechea HC. Experimental design and multiple response optimization. Using the desirability function in analytical methods development. Talanta. 2014;124:123–38.CrossRefGoogle Scholar
  27. 27.
    Bezerra MA, Santelli RE, Oliveira EP, Villar LS, Escaleira LA. Response surface methodology (RSM) as a tool for optimization in analytical chemistry. Talanta. 2008;76:965–77.CrossRefGoogle Scholar
  28. 28.
    Lundstedt T, Seifert E, Abramo L, Thelin B, Åsa N, Pettersen J, et al. Experimental design and optimization. Chemom Intell Lab Syst. 1998;42:3–40.CrossRefGoogle Scholar
  29. 29.
    Espino M, de los Ángeles Fernández M, Gomez FJV, Silva MF. Natural designer solvents for greening analytical chemistry. TrAC - Trends Anal Chem. 2016;76:126–36.CrossRefGoogle Scholar
  30. 30.
    Simpson GIC, Jackson YA. Comparison of the chemical composition of East Indian, Jamaican and other West Indian essential oils of Myristical fragrans Houtt. J Essent Oil Res. 2002;14:6–9.CrossRefGoogle Scholar
  31. 31.
    Tang B, Row KH. Recent developments in deep eutectic solvents in chemical sciences. Monatsh Chem. 2013;144:1427–54.CrossRefGoogle Scholar
  32. 32.
    Tang B, Tian M, Row KH. Determination of terpenoids in Chamaecyparis obtusa leaves by headspace single-drop microextraction with gas chromatography detection. Anal Lett. 2014;47:48–57.CrossRefGoogle Scholar
  33. 33.
    Sawaddipanich V, Chanthai S. Headspace-single drop microextraction followed by gas chromatographic determination of key aroma compounds in tomato fruits and their sample products. Orient J Chem. 2016;32:1271–82.CrossRefGoogle Scholar
  34. 34.
    Moradi M, Kaykhaii M, Ghiasvand AR, Shadabi S, Salehinia A. Comparison of headspace solid-phase microextraction, headspace single-drop microextraction and hydrodistillation for chemical screening of volatiles in Myrtus communis L. Phytochem Anal. 2011;23:379–86.CrossRefGoogle Scholar
  35. 35.
    Jiang C, Wei S, Li X, Zhao Y, Shao M, Zhang H, et al. Ultrasonic nebulization headspace ionic liquid-based single drop microextraction of flavour compounds in fruit juices. Talanta. 2013;106:237–42.CrossRefGoogle Scholar
  36. 36.
    Jalali Heravi M, Sereshti H. Determination of essential oil components of Artemisia haussknechtii Boiss. Using simultaneous hydrodistillation-static headspace liquid phase microextraction-gas chromatography mass spectrometry. J Chromatogr A. 2007;1160:81–9.CrossRefGoogle Scholar
  37. 37.
    Sadeghian F, Ebrahimi P, Shakeri A, Jamali MR. Extraction of Citrus paradisi volatile components by headspace single-drop microextraction and statistical modeling. J Chromatogr Sci. 2016;54:1263–9.CrossRefGoogle Scholar
  38. 38.
    Marongiu B, Piras A, Porcedda S, Tuveri E, Sanjust E, Meli M, et al. Supercritical CO2 extract of Cinnamomum zeylanicum: chemical characterization and antityrosinase activity. J Agric Food Chem. 2007;55:10022–7.CrossRefGoogle Scholar
  39. 39.
    Yang J, Wei H, Yu C, Shi Y, Zhang H. Extraction of the volatile and semivolatile compounds in seeds of Cuminum cyminum L. using hydrodistillation followed by headspace-ionic liquid-based single-drop microextraction. Chromatographia. 2012;75:1435–43.CrossRefGoogle Scholar
  40. 40.
    Santana De Oliveira M, Almeida Da Costa W, Santiago Pereira D, Santos Botelho R, Oliveira De Alencar Menezes T, Helena De Aguiar Andrade E, et al. Chemical composition and phytotoxic activity of clove (Syzygium aromaticum) essential oil obtained with supercritical CO2. J Supercrit Fluids. 2016;118:185–93.CrossRefGoogle Scholar
  41. 41.
    Dawidowicz AL, Rado E, Wianowska D, Mardarowicz M, Gawdzik J. Application of PLE for the determination of essential oil components from Thymus vulgaris L. Talanta. 2008;76:878–84.CrossRefGoogle Scholar
  42. 42.
    Piras A, Rosa A, Marongiu B, Atzeri A, Dessì MA, Falconieri D, et al. Extraction and separation of volatile and fixed oils from seeds of myristica fragrans by supercritical CO2: chemical composition and cytotoxic activity on caco-2 cancer cells. J Food Sci. 2012;77:1–6.CrossRefGoogle Scholar
  43. 43.
    Diao W-R, Hu Q-P, Zhang H, Xu J-G. Chemical composition, antibacterial activity and mechanism of action of essential oil from seeds of fennel (Foeniculum vulgare Mill.). Food Control. 2014;35:109–16.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2020

Authors and Affiliations

  • Zélie Triaux
    • 1
    • 2
  • Hugues Petitjean
    • 2
  • Eric Marchioni
    • 1
  • Maria Boltoeva
    • 1
  • Christophe Marcic
    • 1
    Email author
  1. 1.Université de Strasbourg, CNRS, IPHC UMR 7178StrasbourgFrance
  2. 2.BenephytStrasbourgFrance

Personalised recommendations