Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Ion desorption efficiency and internal energy transfer in polymeric electrospun nanofiber-based surface-assisted laser desorption/ionization mass spectrometry


The understanding of the desorption mechanism in surface-assisted laser desorption/ionization (SALDI) remains incomplete because there are numerous types of SALDI materials with a broad range of physical and chemical properties, many of which impact the ultimate analytical performance in terms of signal generation. In this study, the chemical thermometer molecule, benzylpyridinium chloride, is applied to investigate the desorption process of SALDI using electrospun nanofibrous polymer and polymer composite substrates. The ion desorption efficiency was inversely related to the ion internal energy, which could not be fully explained by a thermal desorption mechanism. A competing non-thermal desorption (i.e., phase transition/explosion) was proposed to be involved in this SALDI process. The influence of the orientation and dimension of the nanofiber structure revealed that a cross-linked nanofiber network with a small diameter favored the nanofiber-assisted LDI to provide efficient ion desorption.

Graphical abstract

This is a preview of subscription content, log in to check access.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7


  1. 1.

    Fenner NC, Daly NR. Laser used for mass analysis. Rev Sci Instrum. 1996;37(8):1068–70.

  2. 2.

    Zakett D, Schoen AE, Cooks RG, Hemberger PH. Laser-desorption mass spectrometry/mass spectrometry and the mechanism of desorption ionization. J Am Chem Soc. 1981;03(5):1295–7.

  3. 3.

    Karas M, Hillenkamp F. Laser desorption ionization of protein with molecular masses exceeding 10,000 Daltons. Anal Chem. 1988;60(20):2299–301.

  4. 4.

    Lu M, Yang X, Yang Y, Qin P, Wu X, Cai Z. Nanomaterial as assisted matrix of laser desorption/ionization time-of-flight mass spectrometry for the analysis of small molecule. Nanomaterials. 2017;92:143–9.

  5. 5.

    Dattelbaum AM, Iyer S. Surface-assisted laser desorption/ionization mass spectrometry. Expert Rev Proteomics. 2006;3(1):153–61.

  6. 6.

    Peterson DS. Matrix-free methods for laser desorption/ionization mass spectrometry. Mass Spectrom Rev. 2007;26(1):19–34.

  7. 7.

    Dale MJ, Konchenmuss R, Zenobi R. Graphite/liquid mixed matrices for laser desorption/ionization mass spectrometry. Anal Chem. 1996;68(19):3321–9.

  8. 8.

    Schurenberg M, Dreisewerd K, Hillenkamp F. Laser desorption/ionization mass spectrometry of peptides and proteins with particle suspension matrixes. Anal Chem. 1999;71(1):221–9.

  9. 9.

    Alimpiev S, Nikiforov S, Karavanskii V, Minton T, Sunner J. On the mechanism of laser-induced desorption-ionization of organic compounds from etched silicon and carbon surfaces. J Chem Phys. 2001;115(4):1891–901.

  10. 10.

    Dreisewerd K. The desorption process in MALDI. Chem Rev. 2003;103(2):395–425.

  11. 11.

    Tanaka K, Waki H, Ido Y, Akita S, Yoshida Y, Yoshida T, et al. Protein and polymer analyses up to m/z 100000 by laser ionization time-of-flight mass spectrometry. Rapid Commun Mass Spectrom. 1988;2:151–3.

  12. 12.

    Yonezawa T, Kawasaki H, Tarui A, Watanabe T, Arakawa R, Shimada T, et al. Detailed investigation on the possibility of nanoparticles of various metal elements for surface-assisted laser desorption/ionization mass spectrometry. Anal Sci. 2009;25:339–46.

  13. 13.

    Tang HW, Ng KM, Lu W, Che CM. Ion desorption efficiency and internal energy transfer in carbon-based surface-assisted laser desorption/ionization mass spectrometry: desorption mechanisms and the design of SALDI substrates. Anal Chem. 2009;81(12):4720–9.

  14. 14.

    Kurita M, Arakawa R, Kawasaki H. Silver nanoparticle functionalized glass fibers for combined surface-enhanced Raman scattering spectroscopy (SERS)/surface-assisted laser desorption/ionization (SALDI) mass spectrometry via plasmonic/thermal hot spots. Analyst. 2016;141:5835–41.

  15. 15.

    Stolee JA, Walker BN, Zorba V, Russo RE, Vertes A. Laser-nanostructure interactions for ion production. Phys Chem Chem Phys. 2002;14:8453–71.

  16. 16.

    Lu T, Olesik SV. Electrospun nanofibers as substrates for surface-assisted laser desorption/ionization and matrix-enhanced surface-assisted laser desorption/ionization mass spectrometry. Anal Chem. 2013;85(9):4384–91.

  17. 17.

    Bian J, Olesik SV. Surface-assisted laser desorption/ionization time-of-flight mass spectrometry of small drug molecules and high molecular weight synthetic/biological polymers using electrospun composite nanofibers. Analyst. 2017;142(7):1125–32.

  18. 18.

    Trauger SA, Go EP, Shen Z, Apon JV, Compton BJ, Bouvier ESP, et al. High sensitivity and analyte capture with desorption/ionization mass spectrometry on silylated porous silicon. Anal Chem. 2004;76:4484–9.

  19. 19.

    Law KP. Laser desorption/ionization mass spectrometry on nanostructured semiconductor substrates: DIOSTM and QuickMassTM. Int J Mass Spectrom. 2010;290:72–84.

  20. 20.

    Bian J, Olesik SV. Polyvinylpyrrolidone composite nanofibers as efficient substrates for surface-assisted laser desorption/ionization mass spectrometry. Int J Mass Spectrom. 2020;448:116253.

  21. 21.

    Clark J, Olesik SV. Technique for ultrathin layer chromatography using an electrospun, nanofibrous stationary phase. Anal Chem. 2009;81(10):4121–9.

  22. 22.

    Beilke MC, Zewe JW, Clark JE, Olesik SV. Aligned electrospun nanofibers for ultrathin layer chromatography. Anal Chim Acta. 2013;761(25):201–8.

  23. 23.

    Ng KM, Chau SL, Tang HW, Wei XG, Lau KC, Ye F, et al. Ion-desorption efficiency and internal-energy transfer in surface-assisted laser desorption/ionization: more implication(s) for the thermal-driven and phase-transition-driven desorption process. J Phys Chem C. 2015;119:23708–20.

  24. 24.

    Luo G, Marginean I, Vertes A. Internal energy of ions generated by matrix-assisted laser desorption/ionization. Anal Chem. 2002;74:6185–90.

  25. 25.

    Derwa F, DePauw E, Natalis P. New basis for a method for the estimation of secondary ion internal energy distribution in soft ionization techniques. Org Mass Spectrom. 1991;26(2):117–8.

  26. 26.

    Collette C, Drahos L, DePauw E, Vekey K. Comparison of the internal energy distributions of ions produced by different electrospray sources. Rapid Commun Mass Spectrom. 1998;12(22):1673–8.

  27. 27.

    Gabelica V, DePauw E. Internal energy and fragmentation of ions produced in electrospray sources. Mass Spectrom Rev. 2005;24(4):566–87.

  28. 28.

    Baer T, Mayer PM. Statistical Rice-Ramsperger-Kassel-Marcus quasiequilibrium theory calculations in mass spectrometry. J Am Soc Mass Spectrom. 1997;8(2):103–15.

  29. 29.

    Drahos L, Vekey K. MassKinetics: a theoretical model of mass spectra incorporating physical processes, reaction kinetics and mathematical descriptions. J Mass Spectrom. 2001;36(3):237–63.

  30. 30.

    Beyer T, Swinehart DF. Algorithm 448: number of multiply-restricted partitions [A1]. Commun ACM. 1973;16(6):379.

  31. 31.

    Naban-Maillet J, Lesage D, Bossée A, Gimbert Y, Sztáray J, Vékey K, et al. Internal energy distribution in electrospray ionization. J Mass Spectrom. 2005;40(1):1–8.

  32. 32.

    Bird RB, Stewart WE, Lightfoot EN. Transport phenomena. Wiley; 2017.

  33. 33.

    Luo G, Chen Y, Daniels H, Dubrow R, Vertes A. Internal energy transfer in laser desorption/ ionization. J Phys Chem B. 2006;110:13381–6.

  34. 34.

    Lai SKM, Tang HW, Lau KC, Ng KM. Nanosecond UV laser ablation of gold nanoparticles: enhancement of ion desorption, vaporization or phase explosion. J Phys Chem C. 2016;120:20368–77.

  35. 35.

    Silina YE, Koch M, Volmer D. Influence of surface melting effects and availability of reagent ions on LDI-MS efficiency after UV laser irradiation of Pd nanostructures. J Mass Spectrom. 2015;50(3):578–85.

  36. 36.

    Wada Y, Yanagishita T, Masuda H. Ordered porous alumina geometries and surface metals for surface-assisted laser desorption/ionization of biomolecules: possible mechanistic implications of metal surface melting. Anal Chem. 2007;79(23):9122–7.

  37. 37.

    Sherrod SD, Diaz AJ, Russell WK, Cremer PS, Russell DS. Silver nanoparticles as selective ionization probes for analysis of olefins by mass spectrometry. Anal Chem. 2008;80(17):6796–9.

  38. 38.

    Yonezawa T, Tsukamoto H, Hayashi S, Myojin Y, Kawasaki H, Arakawa R. Suitability of GaP nanoparticles as a surface-assisted laser desorption/ionization mass spectroscopy inorganic matrix and their soft ionization ability. Analyst. 2013;138(4):995–9.

Download references


The authors thank Dr. Rick Spinney for assisting the theoretical calculation using Spartan software and Dr. Alicia Friedman for assistance measuring the fluence of the laser.


This work was financially supported by the National Science Foundation (Grant No. CHE-1610254).

Author information

Correspondence to Susan V. Olesik.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approach

The article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material


(PDF 789 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bian, J., Olesik, S.V. Ion desorption efficiency and internal energy transfer in polymeric electrospun nanofiber-based surface-assisted laser desorption/ionization mass spectrometry. Anal Bioanal Chem 412, 923–931 (2020). https://doi.org/10.1007/s00216-019-02315-x

Download citation


  • Electrospinning
  • Polymeric nanofibers
  • Surface-assisted laser desorption/ionization
  • Ion desorption efficiency
  • Internal energy transfer