Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

A photoelectrochemical aptasensor based on p-n heterojunction CdS-Cu2O nanorod arrays with enhanced photocurrent for the detection of prostate-specific antigen

Abstract

A sensitive photoelectrochemical (PEC) aptasensor was constructed for prostate-specific antigen (PSA) detection using an enhanced photocurrent response strategy. The p-n heterostructure CdS-Cu2O nanorod arrays were prepared on Ti mesh (CdS-Cu2O NAs/TM) by a simple hydrothermal method and successive ionic-layer adsorption reactions. Compared with the original CdS/TM, the synergistic effect of p-n type CdS-Cu2O NAs/TM and the internal electric field realizes the effective separation of photoinduced electron–hole pairs and improves the PEC performance. In order to construct the aptasensor, an amino-modified aptamer was immobilized on CdS-Cu2O NAs/TM to serve as a recognition unit for PSA. After the introduction of PSA, PSA was specifically captured by the aptamer on the PEC aptasensor, which can be oxidized by photogenerated holes to prevent electron–hole recombination and increase photocurrent. Under optimal conditions, the constructed PEC aptasensor has a linear range of 0.1–100 ng·mL−1 and a detection limit as low as 0.026 ng·mL−1. The results of aptasensor detection of human serum indicate that it has broad application prospects in biosensors and photoelectrochemical analysis.

This is a preview of subscription content, log in to check access.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. 1.

    Pei H, Zhu S, Yang M, Kong R, Zheng Y, Qu F. Graphene oxide quantum dots@ silver core–shell nanocrystals as turn-on fluorescent nanoprobe for ultrasensitive detection of prostate specific antigen. Biosens Bioelectron. 2015;74:909–914.

  2. 2.

    Chen X, Zhou G, Song P, Wang J, Gao J, Lu J, et al. Ultrasensitive electrochemical detection of prostate-specific antigen by using antibodies anchored on a DNA nanostructural scaffold. Anal Chem. 2014;86:7337–7342.

  3. 3.

    Fernandez-Sanchez C, McNiel C-J, Rawson K, Nilsson O, Leung H-Y, Gnanapragasam V. One-step immunostrip test for the simultaneous detection of free and total prostate specific antigen in serum. J Immunol Methods. 2005;307:1–12.

  4. 4.

    Wu J, Fu Z, Yan F, Ju H. Biomedical and clinical applications of immunoassays and immunosensors for tumor markers. Trends Anal Chem. 2007;26:679–688.

  5. 5.

    Lance R-S, Drake R-R, Troyer D-A. Multiple recognition assay reveals prostasomes as promising plasma biomarkers for prostate cancer. Expert Rev Anticancer Ther. 2011;11:1341–1343.

  6. 6.

    Mohan K, Donavan K-C, Arter J-A, Penner R-M, Weiss G-A. Sub-nanomolar detection of prostate-specific membrane antigen in synthetic urine by synergistic, dual-ligand phage. J Am Chem Soc. 2013;135:7761–7767.

  7. 7.

    Souada M, Piron B, Reisberg S, Anquetin G, Noël V, Pham M-C. Label-free electrochemical detection of prostate-specific antigen based on nucleic acid aptamer. Biosens Bioelectron. 2015;68:49–54.

  8. 8.

    Chen Z, Lei Y, Chen X, Wang Z, Liu J. An aptamer based resonance light scattering assay of prostate specific antigen. Biosens Bioelectron. 2012;36:35–40.

  9. 9.

    Fenner A. Prostate cancer: novel “inverse sensitivity” enzyme-linked crystal-growth assay to detect ultralow PSA levels. Nat Rev Urol. 2012;9:354.

  10. 10.

    Kim D-J, Lee N-E, Park J-S, Park I-J, Kim J-G, Cho H-J. Organic electrochemical transistor based immunosensor for prostate specific antigen (PSA) detection using gold nanoparticles for signal amplification. Biosens Bioelectron. 2010;25:2477–2482.

  11. 11.

    Qu F, Li T, Yang M. Colorimetric platform for visual detection of cancer biomarker based on intrinsic peroxidase activity of graphene oxide. Biosens Bioelectron. 2011;26:3927–3931.

  12. 12.

    Wang X, Zhao M, Nolte D-D. Ratliff T-L prostate specific antigen detection in patient sera by fluorescence-free BioCD protein array. Biosens Bioelectron. 2011;26:1871–1875.

  13. 13.

    Zhao Y, Gong J, Zhang X, Kong R, Qu F. Enhanced biosensing platform constructed using urchin-like ZnO-au@CdS microspheres based on the combination of photoelectrochemical and bioetching strategies. Sensors Actuators B Chem. 2018;255:1753–1761.

  14. 14.

    Kong W-S, Tan Q-Q, Guo H-Y, Sun H, Qin X, Qu F-L. Photoelectrochemical determination of the activity of alkaline phosphatase by using a CdS@graphene conjugate coupled to CoOOH nanosheets for signal amplification. Microchim Acta. 2019;186:73–80.

  15. 15.

    Zhao W, Xu J, Chen H. Photoelectrochemical bioanalysis: the state of the art. Chem Soc Rev. 2015;44:729–741.

  16. 16.

    Kang Q, Yang L, Chen Y, Luo S, Wen L, Cai Q, et al. Photoelectrochemical detection of pentachlorophenol with a multiple hybrid CdSexTe1−x/TiO2 nanotube structure-based label-free immunosensor. Anal Chem. 2010;82:9749–9754.

  17. 17.

    Freeman R, Girsh J, Willner I. Nucleic acid/quantum dots (QDs) hybrid systems for optical and photoelectrochemical sensing. ACS Appl Mater Interfaces. 2013;5:2815–2834.

  18. 18.

    Zhao P, Li D, Yao S, Zhang Y, Liu F, Sun P, et al. Design of Ag@C@SnO2@TiO2 yolk-shell nanospheres with enhanced photoelectric properties for dye sensitized solar cells. J Power Sources. 2016;318:49–56.

  19. 19.

    Liu Y, Yan K, Zhang J. Graphitic carbon nitride sensitized with CdS quantum dots for visible-light-driven photoelectrochemical aptasensing of tetracycline. ACS Appl Mater Interfaces. 2016;8:28255–28264.

  20. 20.

    Fang T, Yang X-M, Zhang L-Z, Gong J-M. Ultrasensitive photoelectrochemical determination of chromium (VI) in water samples by ion-imprinted/formate anion-incorporated graphitic carbon nitride nanostructured hybrid. J Hazard Mater. 2016;312:106–113.

  21. 21.

    Gong J, Fang T, Peng D, Li A, Zhang L. A highly sensitive photoelectrochemical detection of perfluorooctanic acid with molecularly imprined polymer-functionalized nanoarchitectured hybrid of AgI–BiOI composite. Biosens Bioelectron. 2015;73:256–263.

  22. 22.

    Gao C, Meng Q, Zhao K, Yin H, Wang D, Guo J, et al. Co3O4 hexagonal platelets with controllable facets enabling highly efficient visible-light photocatalytic reduction of CO2. Adv Mater. 2016;28:6485–6490.

  23. 23.

    Zhao W, Xu J, Chen H. Photoelectrochemical DNA biosensors. Chem Rev. 2014;114:7421–7441.

  24. 24.

    Wen G, Ju H. Enhanced photoelectrochemical proximity assay for highly selective protein detection in biological matrixes. Anal Chem. 2016;88:8339–8345.

  25. 25.

    Li C, Wang H, Shen J, Tan B. Cyclometalated iridium complex-based label-free photoelectrochemical biosensor for DNA detection by hybridization chain reaction amplification. Anal Chem. 2015;87:4283–4291.

  26. 26.

    Du H, Kong R, Guo X, Qu F, Li J. Recent progress in transition metal phosphides with enhanced electrocatalysis for hydrogen evolution. Nanoscale. 2018;10:21617–21624.

  27. 27.

    Zhang X, Si C, Guo X, Kong R, Qu F. A MnCo2S4 nanowire array as an earth-abundant electrocatalyst for an efficient oxygen evolution reaction under alkaline conditions. J Mater Chem A. 2017;5:17211–17215.

  28. 28.

    Qi L, Yu J, Jaroniec M. Preparation and enhanced visible-light photocatalytic H2-production activity of CdS-sensitized Pt/TiO2 nanosheets with exposed (001) facets. Phys Chem Chem Phys. 2011;13:8915–8923.

  29. 29.

    Izaki M, Shinagawa T, Mizuno K, Ida Y, Inaba M, Tasaka A. Electrochemically constructed p-Cu2O/n-ZnO heterojunction diode for photovoltaic device. J Phys D Appl Phys. 2007;40:3326–3329.

  30. 30.

    Wang L. Wang W, Chen Y, Yao L, Zhao X, Shi H, Cao M, Liang Y. Heterogeneous p–n junction CdS/Cu2O nanorod arrays: synthesis and superior visible-light-driven photoelectrochemical performance for hydrogen evolution. ACS Appl Mater Interfaces. 2018;10:11652–11662.

  31. 31.

    Yin G, Sun M, Liu Y, Sun Y, Zhou T, Liu B. Performance improvement in three–dimensional heterojunction solar cells by embedding CdS nanorod arrays in CdTe absorbing layers. Sol Energy Mater Sol Cells. 2017;159:418–426.

  32. 32.

    Zhang X, Zhu S, Xia L, Si C, Qu F, Qu F. Ni(OH)2–Fe2P hybrid nanoarray for alkaline hydrogen evolution reaction with superior activity. Chem Commun. 2018;54:1201–1204.

  33. 33.

    Wang R, Chen S, Ng Y-H, Gao Q, Yang S, Zhang S, et al. ZnO/CdS/PbS nanotube arrays with multi-heterojunctions for efficient visible-light-driven photoelectrochemical hydrogen evolution. Chem Eng J. 2019;362:658–666.

  34. 34.

    Mao L, Ji K, Yao L, Xue X, Wen W, Zhang X, et al. Molecularly imprinted photoelectrochemical sensor for fumonisin B1 based on GO-CdS heterojunction. Biosens Bioelectron. 2019;127:57–63.

  35. 35.

    Zhang J, Wang Y, Yu C, Shu X, Jiang L, Cui J, et al. Enhanced visible-light photoelectrochemical behaviour of heterojunction composite with Cu2O nanoparticles-decorated TiO2 nanotube arrays. New J Chem. 2014;38:4975–4984.

  36. 36.

    Sun Q, Peng Y, Chen H, Chang K, Qiu Y, Lai S. Photoelectrochemical oxidation of ibuprofen via Cu2O-doped TiO2 nanotube arrays. J Hazard Mater. 2016;319:121–129.

  37. 37.

    Yuan W, Yuan J, Xie J, Li C. Polymer-mediated self-assembly of TiO2@Cu2O core–shell nanowire array for highly efficient photoelectrochemical water oxidation. ACS Appl Mater Interfaces. 2016;8:6082–6092.

  38. 38.

    Dong Y, Cao J, Wang B, Ma S, Liu Y. Spatial-resolved photoelectrochemical biosensing array based on a CdS@gC3N4 heterojunction: a universal immunosensing platform for accurate detection. ACS Appl Mater Interfaces. 2018;10:3723–3731.

  39. 39.

    Zhao N, He Y, Mao X, Sun Y, Zhang X, Li C, et al. Electrochemical assay of active prostate-specific antigen (PSA) using ferrocene-functionalized peptide probes. Electrochem Commun. 2010;12:471–474.

  40. 40.

    Barbosa A, Gehlot P, Sidapra K, Edwards A, Reis N. Portable smartphone quantitation of prostate specific antigen (PSA) in a fluoropolymer microfluidic device. Biosens Bioelectron. 2015;70:5–14.

  41. 41.

    Khan Y, Li A, Chang L, Li L, Guo L. Gold nano disks arrays for localized surface plasmon resonance based detection of PSA cancer marker. Sensors Actuators B Chem. 2018;255:1298–1307.

  42. 42.

    Jang H, Kim S, Chang H, Choi J. 3D label-free prostate specific antigen (PSA) immunosensor based on graphene–gold composites. Biosens Bioelectron. 2015;63:546–551.

  43. 43.

    Li H, Huang Y, Zhang B, Yang D, Zhu X, Li G. A new method to assay protease based on amyloid misfolding: application to prostate cancer diagnosis using a panel of proteases biomarkers. Theranostics. 2014;4(7):701–707.

  44. 44.

    Li C, Ma J, Fan Q, Tao Y, Li G. Dynamic light scattering (DLS)-based immunoassay for ultra-sensitive detection of tumor marker protein. Chem Commun. 2016;52:7850–7853.

  45. 45.

    Vashist S, Luppa P, Yeo L, Ozcan A, Luong J. Emerging technologies for next-generation point-of-care testing. Trends Biotechnol. 2015;33(11):692–705.

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21775089, 21671118), Outstanding Youth Foundation of Shandong Province (ZR2017JL010), the Key Research and Development Program of Jining City (2018ZDGH032) and Taishan scholar of Shandong Province.

Author information

Correspondence to Fengli Qu or Limin Lu.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Ethical committee approval

Human serum sample experiments were conducted in accordance with the guidelines of the Ethics Committee of Qufu Normal University. All studies were approved by the Ethics Committee of Qufu Normal University. We have obtained informed consent for any experiments with human serum samples.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 2080 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kong, W., Qu, F. & Lu, L. A photoelectrochemical aptasensor based on p-n heterojunction CdS-Cu2O nanorod arrays with enhanced photocurrent for the detection of prostate-specific antigen. Anal Bioanal Chem 412, 841–848 (2020). https://doi.org/10.1007/s00216-019-02283-2

Download citation

Keywords

  • Prostate-specific antigen
  • CdS-Cu2O nanorod arrays
  • Photoelectrochemical aptasensor
  • Signal amplification