Development of a qualitative/quantitative strategy for comprehensive determination of polar lipids by LC–MS/MS in human plasma

  • M. A. López-Bascón
  • M. Calderón-SantiagoEmail author
  • A. Díaz-Lozano
  • A. Camargo
  • J. López-Miranda
  • F. Priego-CapoteEmail author
Research Paper


Polar lipids, especially glycerophospholipids, constitute the main components of cell membranes and are precursors of signaling molecules in many cellular and physiological processes. For this reason, the development of methods with high capability for detection of polar lipids in biological samples is required. In this research, the objective was to develop a method for comprehensive qualitative/quantitative determination of polar lipids in plasma by a combination of acquisition methods with a triple quadrupole mass analyzer. The strategy was optimized in two steps: (a) a first step for detection of lipids by monitoring selective fragmentation patterns representative of each lipid family and (b) a second step for confirmation of lipid species by detection and identification of product ions associated with the conjugated fatty acids. The acquisition list was divided into two multiple reaction monitoring (MRM) methods to ensure the detection of all transitions with suited instrumental sensitivity according to chromatographic retention time and relative abundance in plasma. The combination of the two MRM methods allowed the detection of 398 polar lipids in plasma in 64 min. Precision, estimated as within-day variability, was below 6.8% for all determined lipid families, while between-day variability was below 24.0%. This strategy has been applied to a cohort formed by 384 individuals in order to obtain a qualitative and quantitative distribution of polar lipids in human plasma. The most concentrated lipid families in relative terms were lysophospholipids, plasmalogens, and phosphatydilcholines, with mean relative concentration of 58.0, 17.1, and 8.3%, respectively. Then, sphingomyelins and phosphatidylethanolamines reported a relative concentration of 2.0%, followed by phosphatidylserines, with 1.1%.

Graphical abstract


Lipidomics Polar lipids LC MS/MS Plasma Multiple reaction monitoring 



M.A. López-Bascón thanks the Ministerio de Educación, Cultura, Deporte (MECD) for an FPU scholarship (FPU15/02373). The authors thank Analytical and Bioanalytical Chemistry Journal for the Poster Communication Award received in the XXII Meeting of the Spanish Analytical Chemistry Society.

Funding information

This research has been financed jointly by the Spanish Ministerio de Economía y Competitividad (through the CTQ2015-68813-R and AGL2014-54089-R projects), the Instituto de Salud Carlos III (through the PIE14/00005/1, FLEXI-MET project), and the European Union H2020 Research and Innovation Programme (JPI-HDHL project “Fatty Acid Metabolism–Interlinking Diet with Cardiometabolic Health”).

Compliance with ethical standards

The study was conducted according to the Declaration of Helsinki and was approved by the Reina Sofia Hospital Biomedical Research and University of Cordoba Biomedical Experimentation Ethical Committees [20]. The individuals enrolled in this study were previously informed to obtain complete consent. The authors declare that they have no conflict of interest.

Supplementary material

216_2019_2261_MOESM1_ESM.pdf (775 kb)
ESM 1 (PDF 775 kb)


  1. 1.
    Ivanova PT, Milne SB, Byrne MO, Xiang Y, Brown HA. Glycerophospholipid identification and quantitation by electrospray ionization mass spectrometry. In: Methods in Enzymology. 2007. p. 21–57.Google Scholar
  2. 2.
    Wishart DS, Knox C, Guo AC, Eisner R, Young N, Gautam B, et al. HMDB: a knowledgebase for the human metabolome. Nucleic Acids Res. 2009;37:603–10.CrossRefGoogle Scholar
  3. 3.
    Sandra K, Sandra P. Lipidomics from an analytical perspective. Curr Opin Chem Biol. 17(5):847–53.PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Holčapek M, Cífková E, Červená B, Lísa M, Vostálová J, Galuszka J. Determination of nonpolar and polar lipid classes in human plasma, erythrocytes and plasma lipoprotein fractions using ultrahigh-performance liquid chromatography-mass spectrometry. J Chromatogr A. 2015;1377:85–91.PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Hvattum E. Analysis of triacylglycerols with non-aqueous reversed-phase liquid chromatography and positive ion electrospray tandem mass spectrometry. Rapid Commun Mass Spectrom. 2001;15(3):187–90.PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Dorschel CA. Characterization of the TAG of peanut oil by electrospray LC-MS-MS. JAOCS, J Am Oil Chem Soc. 2002;79(8):749–53.CrossRefGoogle Scholar
  7. 7.
    Calderón-Santiago M, Priego-Capote F, Galache-Osuna JG. Luque de Castro MD. Analysis of serum phospholipid profiles by liquid chromatography-tandem mass spectrometry in high resolution mode for evaluation of atherosclerotic patients. J Chromatogr A. 2014;1371:154–62.PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Pulfer M, Murphy RC. Electrospray mass spectrometry of phospholipids. Mass Spectrom Rev. 2003;22:332–64.PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Milne S, Ivanova P, Forrester JV, Brown HA. Lipidomics: an analysis of cellular lipids by ESI-MS. Methods. 2006;39:92–103.PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Cai S, Syage JA. Atmospheric pressure photoionization mass spectrometry for analysis of fatty acid and acylglycerol lipids. J Chromatogr A. 2006;1110:15–26.PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Quehenberger O, Dennis EA. The human plasma lipidome. N Engl J Med. 2011;365(19):1812–23.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Castro-gómez P, Garcia-serrano A, Visioli F, Fontecha J. Relevance of dietary glycerophospholipids and sphingolipids to human health. Prostaglandins Leukot Essent Fat Acids. 2015;101:41–51.CrossRefGoogle Scholar
  13. 13.
    Hyötyläinen T, Orešič M. Systems biology strategies to study lipidomes in health and disease. Prog Lipid Res. 2014;55(1):43–60.PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Lee JY, Min HK, Moon MH. Simultaneous profiling of lysophospholipids and phospholipids from human plasma by nanoflow liquid chromatography-tandem mass spectrometry. Anal Bioanal Chem. 2011;400:2953–61.PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Dong J, Cai X, Zhao L, Xue X. Lysophosphatidylcholine profiling of plasma: discrimination of isomers and discovery of lung cancer biomarkers. Metabolomics. 2010;6:478–88.CrossRefGoogle Scholar
  16. 16.
    Murph M, Tanaka T, Pang J, Felix E, Liu S, Trost R, Godwin AK, Newman R, Mills G. Liquid chromatography mass spectrometry for quantifying plasma lysophospholipids: potential biomarkers for cancer diagnosis. In: Methods in Enzymology. 2007. p. 1–25.Google Scholar
  17. 17.
    Han X, Rozen S, Boyle SH, Hellegers C, Cheng H, Burke JR, et al. Metabolomics in early Alzheimer’s disease : identification of altered plasma sphingolipidome using shotgun lipidomics. PLoS Genet. 2011;6(7):1–13.Google Scholar
  18. 18.
    Mielke MM, Haughey NJ, Venkata V, Bandaru R. Plasma sphingomyelins are associated with cognitive progression in Alzheimer’s. J Alzheimers Dis. 2011;27:259–69.PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Mielke MM, Haughey NJ, Haughey NJ. Could plasma sphingolipids be diagnostic or prognostic biomarkers for Alzheimer’s disease? Clin Lipidol. 2017;4299.Google Scholar
  20. 20.
    WMA. Declaration of Helsinki. In: World Medical Association Declaration of Helsinki [Internet]. 2004. p. 1418–9. Available from: Accessed on 15 May 2019.
  21. 21.
    Cui Z, Thomas MJ. Phospholipid profiling by tandem mass spectrometry. J Chromatogr B Anal Technol Biomed Life Sci. 2009;877(26):2709–15.CrossRefGoogle Scholar
  22. 22.
    López-Bascón MA, Calderón-Santiago M, Sánchez-Ceinos J, Fernández-Vega A, Guzmán-Ruiz R, López-Miranda J, et al. Influence of sample preparation on lipidomics analysis of polar lipids in adipose tissue. Talanta. 2018;177:86–93.PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Godzien J, Ciborowski M, Samczuk P, Kretowski A, Barbas C. Rapid and reliable identification of phospholipids for untargeted metabolomics with LC−ESI−QTOF−MS/MS. J Proteome Res. 2015;14:3204–16.PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Yang K, Han X. Lipidomics: techniques, applications, and outcomes related to biomedical sciences. Trends Biochem Sci. 2016;41(11):954–69.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Brügger B. Lipidomics: analysis of the lipid composition of cells and subcellular organelles by electrospray ionization mass spectrometry. Annu Rev Biochem. 2014;83(1):79–98.PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Hsu FF, Turk J. Electrospray ionization with low-energy collisionally activated dissociation tandem mass spectrometry of glycerophospholipids: mechanisms of fragmentation and structural characterization. J Chromatogr B Anal Technol Biomed Life Sci. 2009;877(26):2673–95.CrossRefGoogle Scholar
  27. 27.
    Hsu F, Resource S. Complete structural characterization of ceramides as [M-H] ions by multiple-stage linear ion trap mass spectrometry. Biochimie. 2017;130:63–75.CrossRefGoogle Scholar
  28. 28.
    Hsu F, Turk J. Characterization of ceramides by low energy mass spectrometry with negative-ion electrospray ionization. J Am Soc Mass Spectrom. 2002;13(02):558–70.PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Xiao JF, Zhou B, Ressom HW. Metabolite identification and quantitation in LC-MS/MS-based metabolomics. Trends Anal Chem. 2012;32:1–14.CrossRefGoogle Scholar
  30. 30.
    Krauss M, Singer H, Hollender J. LC-high resolution MS in environmental analysis: from target screening to the identification of unknowns. Anal Bioanal Chem. 2010;397(3):943–51.PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Fahy E, Sud M, Cotter D, Subramaniam S. LIPID MAPS online tools for lipid research. Nucleic Acids Res. 2007;35:606–12.CrossRefGoogle Scholar
  32. 32.
    Cajka T, Fiehn O. Comprehensive analysis of lipids in biological systems by liquid chromatography-mass spectrometry. Trends Anal Chem. 2014;61:192–206.CrossRefGoogle Scholar
  33. 33.
    Bollinger JG, Ii H, Sadilek M, Gelb MH. Improved method for the quantification of lysophospholipids including enol ether species by liquid chromatography-tandem mass spectrometry. J Lipid Res. 2010;51:440–7.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Quehenberger O, Armando AM, Brown AH, Milne SB, Myers DS, Merrill AH, et al. Lipidomics reveals a remarkable diversity of lipids in human plasma. J Lipid Res. 2010;51:3299–305.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Wu Y, Li L. Sample normalization methods in quantitative metabolomics. J Chromatogr A. 2015;1430:80–95.PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Okudaira M, Inoue A, Shuto A, Nakanaga K, Kano K, Makide K, et al. Separation and quantification of 2-acyl-1- lysophospholipids and 1-acyl-2-lysophospholipids in biological samples by LC-MS/MS. J Lipid Res. 2014;55(10):2178–92.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Uhl O, Glaser C, Demmelmair H, Koletzko B. Reversed phase LC/MS/MS method for targeted quantification of glycerophospholipid molecular species in plasma. J Chromatogr B. 2011;879(30):3556–64.CrossRefGoogle Scholar
  38. 38.
    Uran S, Larsen Å, Jacobsen PB, Skotland T. Analysis of phospholipid species in human blood using normal-phase liquid chromatography coupled with electrospray ionization ion-trap tandem mass spectrometry. J Chromatogr B. 2001;758(2):265–75.CrossRefGoogle Scholar
  39. 39.
    Vanier MT. Free sphingoid bases in tissues from patients with type C Niemann-Pick disease and other lysosomal storage disorders. Biochim Biophys Acta. 1994;1226:138–44.PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Katsikas H. Blood sphingomyelins from two European countries. Biochim Biophys Acta. 1995;1258:95–100.PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Hammad SM, Pierce JS, Soodavar F, Smith KJ, Al Gadban MM, Rembiesa B, et al. Blood sphingolipidomics in healthy humans : impact of sample collection methodology. J Lipid Res. 2010;51:3074-30–87.CrossRefGoogle Scholar
  42. 42.
    Ishikawa M, Maekawa K, Saito K, Senoo Y, Urata M, Murayama M. Plasma and serum lipidomics of healthy white adults shows characteristic profiles by subjects’ gender and age. PLoS One. 2014;9(3):e91806.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Shaner RL, Allegood JC, Park H, Wang E, Kelly S, Haynes CA, et al. Quantitative analysis of sphingolipids for lipidomics using triple quadrupole and quadrupole linear ion trap mass spectrometers. J Lipid Res. 2009;50(8):1692–707.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Moser AB, Steinberg SJ, Watkins PA, Moser HW, Ramaswamy K, Siegmund KD, et al. Human and great ape red blood cells differ in plasmalogen levels and composition. Lipids Health Dis. 2011;10(1):101.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Maeba R, Nishimukai M, Sakasegawa S. Plasma/serum plasmalogens: methods of analysis and clinical significance. In: Advances in Clinical Chemistry: Elsevier; 2015. p. 31–94.Google Scholar
  46. 46.
    Jenkins B, West JA, Koulman A. A review of odd-chain fatty acid metabolism and the role of pentadecanoic acid (C15:0) and heptadecanoic acid (C17:0) in health and disease. Molecules. 2015;20:2425–44.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • M. A. López-Bascón
    • 1
    • 2
    • 3
    • 4
  • M. Calderón-Santiago
    • 1
    • 2
    • 3
    • 4
    Email author
  • A. Díaz-Lozano
    • 1
    • 2
    • 3
    • 4
  • A. Camargo
    • 2
    • 5
  • J. López-Miranda
    • 2
    • 5
  • F. Priego-Capote
    • 1
    • 2
    • 3
    • 4
    Email author
  1. 1.Department of Analytical ChemistryUniversity of CórdobaCórdobaSpain
  2. 2.Maimónides Institute for Biomedical Research (IMIBIC)/University of Córdoba/Reina Sofía University HospitalCórdobaSpain
  3. 3.CeiA3 Agroalimentary Excellence CampusUniversity of CórdobaCórdobaSpain
  4. 4.CIBER Fragilidad y Envejecimiento Saludable (CIBERfes)Instituto de Salud Carlos IIIMadridSpain
  5. 5.CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN)Instituto de Salud Carlos IIIMadridSpain

Personalised recommendations