Advertisement

Rapid visualized isothermal nucleic acid testing of Vibrio parahaemolyticus by polymerase spiral reaction

  • Shiyu He
  • Hongbo Jang
  • Chao Zhao
  • Kun Xu
  • Juan Wang
  • Bo Pang
  • Xiaoxue Si
  • Minghua Jin
  • Xiuling SongEmail author
  • Juan LiEmail author
Research Paper
  • 25 Downloads

Abstract

The aim of this study was to develop an effective and specific visual method to rapidly detect and identify Vibrio parahaemolyticus (V. parahaemolyticus) based on the polymerase spiral reaction (PSR). The method utilized only two pairs of primers designed specifically to target the conserved tlh gene sequence of V. parahaemolyticus. Nucleic acid amplification can be achieved under isothermal conditions using DNA polymerase. The reaction could be accomplished in < 40 min with high specificity and sensitivity. The limits of detection of V. parahaemolyticus in purified genomic DNA and pure culture were 300 fg/μL and 2.4 CFU/mL per reaction, respectively, which were 100-fold more sensitive than with conventional PCR. The model food samples showed consistent specificity and sensitivity to the pure bacterial culture. With these encouraging results, it is expected that the novel, effortless and reliable isothermal nucleic acid testing assay developed in this study has potential to be applied to screening for V. parahaemolyticus in seafood samples.

Keywords

Vibrio parahaemolyticus Polymerase spiral reaction Isothermal nucleic acid testing Rapid detection 

Notes

Funding information

This study was funded by the National Natural Science Foundation of China (Grant numbers 81502849 and 81872668), the Bethune Medical Scientific Research Fund Project of Jilin University (Grant number 2018B20), the Scientific and Technological Research Project of Jilin Province (Grant numbers 20170204003SF and 20180101095JC), Health science and technology capacity improvement project of Jilin Province (2019Q011) and the Fundamental Research Funds for the Central Universities.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

216_2019_2209_MOESM1_ESM.pdf (311 kb)
ESM 1 (PDF 311 kb)

References

  1. 1.
    Cruz FR, Mai HN, Dhar AK. Multiplex SYBR Green and duplex TaqMan real-time PCR assays for the detection of Photorhabdus insect-related (Pir) toxin genes pirA and pirB. Mol Cell Probes. 2019;43:20–8.Google Scholar
  2. 2.
    Twedt RM, Novelli RM. Modified selective and differential isolation medium for Vibrio parahaemolyticus. Appl Microbiol. 1971;22:593–9.PubMedPubMedCentralGoogle Scholar
  3. 3.
    Aguirre GG, Vazquez JR, Ascencio F. Differences in the susceptibility of American white shrimp larval substages (Litopenaeus vannamei) to four Vibrio species. J Invertebr Pathol. 2001;78:215–9.Google Scholar
  4. 4.
    Fu K, Zheng Y, Li J, Liu Y, Pang B, Song X, et al. Colorimetric immunoassay for rapid detection of Vibrio parahemolyticus based on Mn2+ mediates the assembly of gold nanoparticles. J Agric Food Chem. 2018;66:9516–21.CrossRefGoogle Scholar
  5. 5.
    Zhang Z, Lou Y, Du S, Xiao L, Niu B, Pan Y, et al. Prevalence of Vibrio parahaemolyticus in seafood products from hypermarkets in Shanghai. J Sci Food Agric. 2017;97:705–10.CrossRefGoogle Scholar
  6. 6.
    Banerjee SK, Farber JM. Detection, enumeration, and isolation of Vibrio parahaemolyticus and V. vulnificus from seafood: development of a multidisciplinary protocol. J AOAC Int. 2017;100:445–53.CrossRefGoogle Scholar
  7. 7.
    Zeng J, Wei H, Zhang L, Liu X, Zhang H, Cheng J, et al. Rapid detection of Vibrio parahaemolyticus in raw oysters using immunomagnetic separation combined with loop-mediated isothermal amplification. Int J Food Microbiol. 2014;174:123–8.CrossRefGoogle Scholar
  8. 8.
    Farrar JS, Wittwer CT. Extreme PCR: efficient and specific DNA amplification in 15-60 seconds. Clin Chem. 2015;61:145–53.CrossRefGoogle Scholar
  9. 9.
    Li Z, Ju R, Sekine S, Zhang D, Zhuang S, Yamaguchi Y. All-in-one microfluidic device for on-site diagnosis of pathogens based on an integrated continuous flow PCR and electrophoresis biochip. Lab Chip. 2019;19:2663–8.CrossRefGoogle Scholar
  10. 10.
    Li Z, Zhao Y, Zhang D, Zhuang S, Yamaguchi Y. The development of a portable buoyancy-driven PCR system and its evaluation by capillary electrophoresis. Sens Actuators B: Chem. 2016;230:779–84.CrossRefGoogle Scholar
  11. 11.
    Liu W, Dong D, Yang Z, Zou D, Chen Z, Yuan J, et al. Polymerase spiral reaction (PSR): a novel isothermal nucleic acid amplification method. Sci Rep. 2015;5:12723.CrossRefGoogle Scholar
  12. 12.
    UNICEF/UNDP/World Bank/WHO special program for research and training in tropical diseases. World Health Organization.Google Scholar
  13. 13.
    Marvin D, Derong Z, Dayang L, Ningwei H, Xiaoming AA, Big Y, et al. Polymerase reaction spiral rapid detection of influenza A (H1N1) virus. Mil Med. 2017;41:449–52.Google Scholar
  14. 14.
    Taniguchi H. Cloning and expression in Escherichia coli of Vibrio parahaemolyticus thermostable direct hemolysin and thermolabile hemolysin genes. Nihon saikingaku zasshi. Jpn J Bacteriol. 1987;42:789–800.CrossRefGoogle Scholar
  15. 15.
    Taniguchi H, Hirano H, Kubomura S, Higashi K, Mizuguchi Y. Comparison of the nucleotide sequences of the genes for the thermostable direct hemolysin and the thermolabile hemolysin from Vibrio parahaemolyticus. Microb Pathog. 1986;1:425–32.CrossRefGoogle Scholar
  16. 16.
    Goto M, Honda E, Ogura A, Nomoto A, Hanaki K. Colorimetric detection of loop-mediated isothermal amplification reaction by using hydroxy naphthol blue. Biotechniques. 2009;46:167–72.CrossRefGoogle Scholar
  17. 17.
    Zhang Z, Xiao L, Lou Y, Jin M, Liao C, Malakar PK, et al. Development of a multiplex real-time PCR method for simultaneous detection of Vibrio parahaemolyticus, Listeria monocytogenes and Salmonella spp. in raw shrimp. Food Control. 2015;51:31–6.CrossRefGoogle Scholar
  18. 18.
    Prompamorn P, Longyant S, Pengsuk C, Sithigorngul P, Chaivisuthangkura P. Rapid identification and differentiation of Vibrio parahaemolyticus from Vibrio spp. in seafood samples using developed monoclonal antibodies. World J Microbiol Biotechnol. 2013;29:721–31.CrossRefGoogle Scholar
  19. 19.
    Li Y, Li Y, Zheng B, Qu L, Li C. Determination of foodborne pathogenic bacteria by multiplex PCR-microchip capillary electrophoresis with genetic algorithm-support vector regression optimization. Anal Chim Acta. 2009;643:100–7.CrossRefGoogle Scholar
  20. 20.
    Wang S, Yang J, Shen Z, et al. Analysis of 766 cases of bacterial food poisoning in China from 1994 to 2003. China Prev Med. 2006;180–184.Google Scholar
  21. 21.
    Yan C, Yunchang G, Zhutian W, Xm L, Hong L, Month WA, et al. Analysis of surveillance data on foodborne disease outbreaks in China in 2006. Health Res. 2010;39:331–4.Google Scholar
  22. 22.
    Wang S, Duan H, Zhang W, Li JW. Analysis of bacterial foodborne disease outbreaks in China between 1994 and 2005. FEMS Immunol Med Microbiol. 2007;51:8–13.CrossRefGoogle Scholar
  23. 23.
    Taniguchi H, Hirano H, Kubomura S, Higashi K, Mizuguchi Y. Comparison of the nucleotide sequences of the genes for the thermostable direct hemolysin and the thermolabile hemolysin from Vibrio parahaemolyticus. Microb Pathog. 1986;1:425–32.CrossRefGoogle Scholar
  24. 24.
    Notomi T, Mori Y, Tomita N, Kanda H. Loop-mediated isothermal amplification (LAMP): principle, features, and future prospects. J Microbiol. 2015;53:1–5.CrossRefGoogle Scholar
  25. 25.
    Gupta V, Chakravarti S, Chander V, Majumder S, Bhat SA, Gupta VK, et al. Polymerase spiral reaction (PSR): a novel, visual isothermal amplification method for detection of canine parvovirus 2 genomic DNA. Arch Virol. 2017;162:1995–2001.CrossRefGoogle Scholar
  26. 26.
    Das A, Kumar B, Chakravarti S, Prakash C, Singh RP, Gupta V, et al. Rapid visual isothermal nucleic acid-based detection assay of Brucella species by polymerase spiral reaction. J Appl Microbiol. 2018;125:646–54.CrossRefGoogle Scholar
  27. 27.
    Liu Y, Zhao C, Song X, Xu K, Wang J, Li J. Colorimetric immunoassay for rapid detection of Vibrio parahaemolyticus. Microchim Acta. 2017;184:4785–92.CrossRefGoogle Scholar
  28. 28.
    Xiang G, Pu X, Jiang D, Liu L, Liu C, Liu X. Development of a real-time resistance measurement for Vibrio parahaemolyticus detection by the lecithin-dependent hemolysin gene. PLoS One. 2013;8:e72342.CrossRefGoogle Scholar
  29. 29.
    Liu X, Guan Y, Cheng S, Huang Y, Yan Q, Zhang J, et al. Development of a highly sensitive lateral immunochromatographic assay for rapid detection of Vibrio parahaemolyticus. J Microbiol Methods. 2016;131:78–84.CrossRefGoogle Scholar
  30. 30.
    Yamazaki W, Ishibashi M, Kawahara R, Inoue K. Development of a loop-mediated isothermal amplification assay for sensitive and rapid detection of Vibrio parahaemolyticus. BMC Microbiol. 2008;8:163.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Shiyu He
    • 1
  • Hongbo Jang
    • 2
  • Chao Zhao
    • 1
  • Kun Xu
    • 1
  • Juan Wang
    • 1
  • Bo Pang
    • 1
  • Xiaoxue Si
    • 1
  • Minghua Jin
    • 1
  • Xiuling Song
    • 1
    Email author
  • Juan Li
    • 1
    Email author
  1. 1.Department of Hygienic Inspection, School of Public HealthJilin UniversityChangchunChina
  2. 2.Research LaboratoryChangchun Children’s HospitalChangchunChina

Personalised recommendations