Advertisement

Defining a system suitability limit to decide on column deterioration and to facilitate column transfers in chiral supercritical fluid chromatography

  • Sven Declerck
  • Yvan Vander Heyden
  • Debby MangelingsEmail author
Research Paper
  • 46 Downloads
Part of the following topical collections:
  1. Female Role Models in Analytical Chemistry

Abstract

The separation of enantiomers is an important requirement during the entire drug life cycle in the pharmaceutical industry. High-performance liquid chromatography and supercritical fluid chromatography (SFC) are the main chromatographic techniques used to separate enantiomers. Since chiral stationary phases are often extensively used once a method has been developed, columns will age and must be replaced after a certain period. However, no practical guidelines exist to determine when a column is deteriorated or to decide whether a transfer to another column (with the same chiral selector) is successful. In this study, a system suitability limit for resolution was defined, based on an intermediate (time-different) precision study in SFC on four immobilized polysaccharide-based columns that only differed in manufacturer or particle size. This system suitability limit could be used to decide on column deterioration or as a requirement to evaluate whether a separation transfer was successful. Some method adaptations may be necessary to obtain successful transfers. An approach was proposed, which helped the analyst to make successful transfers.

Graphical abstract

Keywords

Supercritical fluid chromatography Enantioseparations Intermediate-precision study System suitability Transfer 

Notes

Acknowledgements

The authors would like to thank Ana Ocaña for performing a part of the experiments during her Erasmus stay. The authors are grateful to Phenomenex and YMC for providing columns.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

216_2019_2173_MOESM1_ESM.pdf (118 kb)
ESM 1 (PDF 118 kb)

References

  1. 1.
    McConathy J, Owens MJ. Stereochemistry in drug action. Prim Care Companion J Clin Psychiatry. 2003;5:70–3.CrossRefGoogle Scholar
  2. 2.
    Bonner WA. Parity violation and the evolution of biomolecular homochirality. Chirality. 2000;12:114–26.CrossRefGoogle Scholar
  3. 3.
    Vargesson N. Thalidomide-induced teratogenesis: history and mechanisms. Birth Defects Res Part C - Embryo Today Rev. 2015;105:140–56.CrossRefGoogle Scholar
  4. 4.
    European Medicines Agency. Guideline on test procedures and acceptance criteria for new veterinary drug substances and new medicinal products: chemical substances. 2005;1–20. Available from: http://www.ema.europa.eu/docs/en_GB/document_library/Scientific_guideline/2009/10/WC500004339.pdf. Accessed 6 Apr 2019.
  5. 5.
    European Medicines Agency. Investigation of chiral active substances. 1994;381–91. Available from: http://www.ema.europa.eu/docs/en_GB/document_library/Scientific_guideline/2009/09/WC500002816.pdf. Accessed 6 Apr 2019.
  6. 6.
    Shimazawa R, Nagai N, Toyoshima S, Okuda H. Present state of new chiral drug development and review in Japan. J Heal Sci. 2008;54:23–9.CrossRefGoogle Scholar
  7. 7.
    Food and Drug Administration. Guidances (Drugs) - Development of new stereoisomeric drugs. Center for Drug Evaluation and Research; [cited 2015 Aug 7]. Available from: http://www.fda.gov/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/ucm122883.htm.
  8. 8.
    Calcaterra A, D’Acquarica I. The market of chiral drugs: chiral switches versus de novo enantiomerically pure compounds. J Pharm Biomed Anal. Elsevier B.V.; 2018;147:323–40. Available from:  https://doi.org/10.1016/j.jpba.2017.07.008.CrossRefGoogle Scholar
  9. 9.
    Francotte ER. Enantioselective chromatography as a powerful alternative for the preparation of drug enantiomers. J Chromatogr A. 2001;906:379–97.CrossRefGoogle Scholar
  10. 10.
    Speybrouck D, Lipka E. Preparative supercritical fluid chromatography: a powerful tool for chiral separations. J Chromatogr A. Elsevier B.V.; 2016;1467:33–55. Available from:  https://doi.org/10.1016/j.chroma.2016.07.050.CrossRefGoogle Scholar
  11. 11.
    Patel DC, Wahab MF, Armstrong DW, Breitbach ZS. Advances in high-throughput and high-efficiency chiral liquid chromatographic separations. J Chromatogr A. Elsevier B.V.; 2016;1467:2–18. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0021967316309621.CrossRefGoogle Scholar
  12. 12.
    Desfontaine V, Guillarme D, Francotte E, Nováková L. Supercritical fluid chromatography in pharmaceutical analysis. J Pharm Biomed Anal. Elsevier B.V.; 2015;113:56–71. Available from:  https://doi.org/10.1016/j.jpba.2015.03.007.CrossRefGoogle Scholar
  13. 13.
    Taylor LT. Supercritical fluid chromatography for the 21st century. J Supercrit Fluids. 2009;47:566–73.CrossRefGoogle Scholar
  14. 14.
    De Klerck K, Vander Heyden Y, Mangelings D. Generic chiral method development in supercritical fluid chromatography and ultra-performance supercritical fluid chromatography. J Chromatogr A. Elsevier B.V.; 2014;1363:311–22. Available from:  https://doi.org/10.1016/j.chroma.2014.06.011.CrossRefGoogle Scholar
  15. 15.
    Perrin C, Vu VA, Matthijs N, Maftouh M, Massart DL, Vander HY. Screening approach for chiral separation of pharmaceuticals: part I. Normal-phase liquid chromatography. J Chromatogr A. 2002;947:69–83.CrossRefGoogle Scholar
  16. 16.
    Ates H, Mangelings D, Vander HY. Fast generic chiral separation strategies using electrophoretic and liquid chromatographic techniques. J Pharm Biomed Anal. 2008;48:288–94.CrossRefGoogle Scholar
  17. 17.
    Felletti S, Ismail OH, De Luca C, Costa V, Gasparrini F, Pasti L, et al. Recent achievements and future challenges in supercritical fluid chromatography for the enantioselective separation of chiral pharmaceuticals. Chromatographia. Springer Berlin Heidelberg; 2019;82:65–75. Available from:  https://doi.org/10.1007/s10337-018-3606-1.CrossRefGoogle Scholar
  18. 18.
    Lesellier E, West C. The many faces of packed column supercritical fluid chromatography - a critical review. J Chromatogr A. Elsevier B.V.; 2015;1382:2–46. Available from:  https://doi.org/10.1016/j.chroma.2014.12.083.CrossRefGoogle Scholar
  19. 19.
    Miller L. Preparative enantioseparations using supercritical fluid chromatography. J Chromatogr A. Elsevier B.V.; 2012;1250:250–5. Available from:  https://doi.org/10.1016/j.chroma.2012.05.025.CrossRefGoogle Scholar
  20. 20.
    Berger TA, Fogleman K, Staats T, Bente P, Crocket I, Farrell W, et al. The development of a semi-preparatory scale supercritical-fluid chromatograph for high-throughput purification of “combi-chem” libraries. J Biochem Biophys Methods. 2000;43:87–111.CrossRefGoogle Scholar
  21. 21.
    Zhang Y, Wu DR, Wang-Iverson DB, Tymiak AA. Enantioselective chromatography in drug discovery. Drug Discov Today. 2005;10:571–7.CrossRefGoogle Scholar
  22. 22.
    Matthijs N, Maftouh M, Vander HY. Chiral separation strategy in polar organic solvent chromatography and performance comparison with normal-phase liquid and supercritical-fluid chromatography. J Sep Sci. 2006;29:1353–62.CrossRefGoogle Scholar
  23. 23.
    Huang Y, Feng Y, Tang G, Li M, Zhang T, Fillet M, et al. Development and validation of a fast SFC method for the analysis of flavonoids in plant extracts. J Pharm Biomed Anal. Elsevier B.V.; 2017;140:384–91. Available from:  https://doi.org/10.1016/j.jpba.2017.03.012.CrossRefGoogle Scholar
  24. 24.
    Laboureur L, Guérineau V, Auxilien S, Yoshizawa S, Touboul D. Profiling of modified nucleosides from ribonucleic acid digestion by supercritical fluid chromatography coupled to high resolution mass spectrometry. J Chromatogr A. Elsevier B.V.; 2018;1537:118–27. Available from:  https://doi.org/10.1016/j.chroma.2017.12.020.CrossRefGoogle Scholar
  25. 25.
    Lemasson E, Bertin S, Hennig P, Lesellier E, West C. Comparison of ultra-high performance methods in liquid and supercritical fluid chromatography coupled to electrospray ionization – mass spectrometry for impurity profiling of drug candidates. J Chromatogr A. Elsevier B.V.; 2016;1472:117–28. Available from:  https://doi.org/10.1016/j.chroma.2016.10.045.CrossRefGoogle Scholar
  26. 26.
    Klesper K. High pressure gas chromatography above critical temperatures. J Org Chem. 1962;27:700–1.CrossRefGoogle Scholar
  27. 27.
    De Klerck K, Mangelings D, Vander Heyden Y. Supercritical fluid chromatography for the enantioseparation of pharmaceuticals. J Pharm Biomed Anal. Elsevier B.V.; 2012;69:77–92. Available from:  https://doi.org/10.1016/j.jpba.2012.01.021.CrossRefGoogle Scholar
  28. 28.
    Cruz E, Euerby MR, Johnson CM, Hackett CA. Chromatographic classification of commercially available reversed-phase HPLC columns. Chromatographia. 1997;44:151–61.CrossRefGoogle Scholar
  29. 29.
    Neue UD, Van Tran K, Iraneta PC, Alden BA. Characterization of HPLC packings. J Sep Sci. 2003;26:174–86.CrossRefGoogle Scholar
  30. 30.
    Armstrong DW, Zhang B. Product review: chiral stationary phases for HPLC. Anal Chem. 2001;73:557 A-561 A. Available from: http://www.ncbi.nlm.nih.gov/pubmed/20000643%5Cn. http://pubs.acs.org/doi/abs/10.1021/ac012526n.Google Scholar
  31. 31.
    Snyder LR, Dolan JW, Carr PW. The hydrophobic-subtraction model of reversed-phase column selectivity. J Chromatogr A. 2004;1060:77–116.CrossRefGoogle Scholar
  32. 32.
    Nacalai. What happens when a column deteriorates? [cited 2019 Jul 24]. Available from: https://www.nacalai.co.jp/global/cosmosil/FAQ/Q16-Q21.html.
  33. 33.
    Sigma-Aldrich. HPLC Troubleshooting Guide. 2009 [cited 2019 Jul 24]. p. 20. Available from: https://www.sigmaaldrich.com/content/dam/sigma-aldrich/docs/Supelco/Bulletin/4497.pdf.
  34. 34.
    De Klerck K, Vander Heyden Y, Mangelings D. Exploratory data analysis as a tool for similarity assessment and clustering of chiral polysaccharide-based systems used to separate pharmaceuticals in supercritical fluid chromatography. J Chromatogr A. Elsevier B.V.; 2014;1326:110–24. Available from:  https://doi.org/10.1016/j.chroma.2013.12.052.CrossRefGoogle Scholar
  35. 35.
    Matthijs N, Vander HY. Enantiomeric impurity determination in capillary electrophoresis using a highly-sulfated cyclodextrins-based method. Biomed Chromatogr. 2006;20:696–709.CrossRefGoogle Scholar
  36. 36.
    International Conference On Harmonisation. Validation of analytical procedures: text and methodology Q2(R1). 2005;1–13. Available from: https://www.ich.org/fileadmin/Public_Web_Site/ICH_Products/Guidelines/Quality/Q2_R1/Step4/Q2_R1__Guideline.pdf. Accessed 30 Sept 2019.

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Sven Declerck
    • 1
  • Yvan Vander Heyden
    • 1
  • Debby Mangelings
    • 1
    Email author
  1. 1.Department of Analytical Chemistry, Applied Chemometrics and Molecular Modelling (FABI)Vrije Universiteit Brussel (VUB)BrusselsBelgium

Personalised recommendations