Advertisement

Fragmentation studies of neutral per- and polyfluoroalkyl substances by atmospheric pressure ionization-multiple-stage mass spectrometry

  • Juan F. Ayala-Cabrera
  • F. Javier Santos
  • Encarnación MoyanoEmail author
Paper in Forefront

Abstract

The establishment of fragmentation pathways has a great interest in the identification of new or unknown related compounds present in complex samples. On that way, tentative fragmentation pathways for the ions generated by atmospheric pressure ionization of neutral per- and polyfluorinated alkyl substances (PFASs) have been proposed in this work. Electrospray (ESI), atmospheric pressure chemical ionization (APCI) and photoionization (APPI) were evaluated using mobile phases and source conditions that enhance the ionization efficiency of ions generated. A hybrid mass spectrometer consisting of a linear ion trap and an Orbitrap was used to combine the information of both multiple-stage mass spectrometry (MSn) and mass accuracy measurements to characterize and establish the genealogical relationship between the product ions observed. The ionization mechanisms to generate ions such as [M–H], [M]−•, and [M+O2]−• or the in-source collision-induced dissociation (CID) fragment ions in each API source are discussed in this study. In general, fluorotelomer olefins (FTOs) ionized in negative-ion APCI and APPI generated the molecular ion, while fluorotelomer alcohols (FTOHs) also provided the deprotonated molecule. Besides, fluorooctane sulfonamides (FOSAs) and sulfonamido-ethanols (FOSEs) led to the deprotonated molecule and in-source CID fragment ions, respectively. The fragmentation pathways from these precursor ions mainly involved initial α,β-eliminations of HF units and successive losses of CF2 units coming from the perfluorinated alkyl chain. Moreover, FTOHs and FOSEs showed a high tendency to generate adduct ions under negative-ion ESI and APPI conditions. The fragmentation study of these adduct ions has demonstrated a strong interaction with the attached moiety.

Graphical abstract

Keywords

Fluorotelomer olefins Fluorotelomer alcohols Fluorooctane sulfonamides and sulfonamido-ethanols Atmospheric pressure ionization Multiple-stage mass spectrometry Fragmentation pathway 

Notes

Funding information

The authors acknowledge the financial support received from the Spanish Ministry of Economy and Competitiveness under the project CTQ2015-63968-C2-1-P and the financial support from the Spanish Ministry of Science, Innovation and Universities under the project PGC2018-095013-B-I00. The authors also thank the Generalitat of Catalonia for the research project 2018 SGR-310. Juan F. Ayala-Cabrera also thanks the Spanish Ministry of Education, Culture and Sports for the PhD FPU fellowship (FPU14/05539) and the Research Institute in Water (IdRA) of Barcelona for the PhD research financial assistance.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

216_2019_2150_MOESM1_ESM.pdf (428 kb)
ESM 1 (PDF 427 kb)

References

  1. 1.
    Toribio F, Moyano E, Puignou L, Galceran MT. Multistep mass spectrometry of heterocyclic amines in a quadrupole ion trap mass analyser. J Mass Spectrom. 2002;37:812–28.CrossRefGoogle Scholar
  2. 2.
    Alechaga É, Moyano E, Galceran MT. Atmospheric pressure ionization-tandem mass spectrometry of the phenicol drug family. J Mass Spectrom. 2013;48:1241–51.CrossRefGoogle Scholar
  3. 3.
    De La Iglesia P, Fonollosa E, Diogène J. Assessment of acylation routes and structural characterisation by liquid chromatography/tandemmass spectrometry of semi-synthetic acyl ester analogues of lipophilic marine toxins. Rapid Commun Mass Spectrom. 2014;28:2605–16.CrossRefGoogle Scholar
  4. 4.
    Huang M, Cheng Z, Wang L, Feng Y, Huang J, Du Z, et al. A targeted strategy to identify untargeted metabolites from in vitro to in vivo: rapid and sensitive metabolites profiling of licorice in rats using ultra-high performance liquid chromatography coupled with triple quadrupole-linear ion trap mass spectrometry. J Chromatogr B. 2018;1092:40–50.CrossRefGoogle Scholar
  5. 5.
    Núñez O, Moyano E, Galceran MT. High mass accuracy in-source collision-induced dissociation tandem mass spectrometry and multi-step mass spectrometry as complementary tools for fragmentation studies of quaternary ammonium herbicides. J Mass Spectrom. 2014;39:873–83.CrossRefGoogle Scholar
  6. 6.
    Yu D, Liang X. Fragmentation pathways and differentiation of positional isomers of sorafenib and structural analogues by ESI-IT-MSn and ESI-Q-TOF-MS/MS coupled with DFT calculations. J Mass Spectrom. 2018;53:579–89.CrossRefGoogle Scholar
  7. 7.
    Sekuła K, Zuba D, Lorek K. Analysis of fragmentation pathways of new-type synthetic cannabinoids using electrospray ionization. J Am Soc Mass Spectrom. 2018;29:1941–50.CrossRefGoogle Scholar
  8. 8.
    Huysman S, Van Meulebroek L, Janssens O, Vanryckeghem F, Van Langenhove H, Demeestere K, et al. Targeted quantification and untargeted screening of alkylphenols, bisphenol A and phthalates in aquatic matrices using ultra-high-performance liquid chromatography coupled to hybrid Q-Orbitrap mass spectrometry. Anal Chim Acta. 2018;1049:141–51.CrossRefGoogle Scholar
  9. 9.
    Qi H, Chen F, Liu T, Zhang F, Zhang F, Zhai J, et al. Development of an analytical method for twelve Dioscorea saponins using liquid chromatography coupled to Q-exactive high resolution mass spectrometry. Talanta. 2018;191:11–20.CrossRefGoogle Scholar
  10. 10.
    Chen L, Chen X, Wang S, Bian Y, Zhao J, Li S. Analysis of triterpenoids in Ganoderma resinaceum using liquid chromatography coupled with electrospray ionization quadrupole–time-of-flight mass spectrometry. Int J Mass Spectrom. 2019;436:42–51.CrossRefGoogle Scholar
  11. 11.
    Asare SO, Huang F, Lynn BC. Characterization and sequencing of lithium cationized β-O-4 lignin oligomers using higher-energy collisional dissociation mass spectrometry. Anal Chim Acta. 2019;1047:104–14.CrossRefGoogle Scholar
  12. 12.
    Li Y, Liu Y, Liu R, Liu S, Zhang X, Wang Z, et al. HPLC-LTQ-orbitrap MSn profiling method to comprehensively characterize multiple chemical constituents in xiao-er-qing-jie granules. Anal Methods. 2015;7:7511–26.CrossRefGoogle Scholar
  13. 13.
    Shan J, Zhao X, Shen C, Ji J, Xu J, Wang S, et al. Liquid chromatography coupled with linear ion trap hybrid OrbitrapMass spectrometry for determination of alkaloids in Sinomenium acutum. Molecules. 2018.  https://doi.org/10.3390/molecules23071634.CrossRefGoogle Scholar
  14. 14.
    Prothmann J, Spégel P, Sandahl M, Turner C. Identification of lignin oligomers in Kraft lignin using ultra-high-performance liquid chromatography/high-resolution multiple-stage tandem mass spectrometry (UHPLC/HRMSn). Anal Bioanal Chem. 2018;410:7803–14.CrossRefGoogle Scholar
  15. 15.
    Lv X, Sun JZ, Xu SZ, Cai Q, Liu YQ. Rapid characterization and identification of chemical constituents in Gentiana radix before and after wine-processed by UHPLC-LTQ-orbitrap MSn. Molecules. 2018.  https://doi.org/10.3390/molecules23123222.CrossRefGoogle Scholar
  16. 16.
    Kissa E. Fluorinated surfactants and repellents. second ed. New York: Marcel Dekker; 2001.Google Scholar
  17. 17.
    Buck RC, Franklin J, Berger U, Conder JM, Cousins IT, De Voogt P, et al. Perfluoroalkyl and polyfluoroalkyl substances in the environment: terminology, classification, and origins. Integr Environ Assess Manag. 2011;7:513–41.CrossRefGoogle Scholar
  18. 18.
    Council Decision (EU) 2015/633 of 20 April 2015 on the submission, on behalf of the European Union. of a proposal for the listing of additional chemicals in Annex A to the Stockholm Convention on persistent organic pollutants. Off J Eur Union. 2015;L 104:14–5.Google Scholar
  19. 19.
    Jahnke A, Ahrens L, Ebinghaus R, Temme C. Urban versus remote air concentrations of fluorotelomer alcohols and other polyfluorinated alkyl substances in Germany. Environ Sci Technol. 2007;41:745–52.CrossRefGoogle Scholar
  20. 20.
    Decision SC-4/17 of 4–8 May 2009 of Listing of perfluorooctane sulfonic acid, its salts and perfluorooctano sulfonyl fluoride. United Nation Environment Programme. Stockholm Convention on persistent organic pollutants. UNEP/POPS/COP-4/38:66–9.Google Scholar
  21. 21.
    Martin JW, Muir DCG, Moody CA, Ellis DA, Kwan WC, Solomon KR, et al. Collection of airborne fluorinated organics and analysis by gas chromatography / chemical ionization mass spectrometry. Anal Chem. 2002;74:584–90.CrossRefGoogle Scholar
  22. 22.
    Wu Y, Chang VWC. Development of analysis of volatile polyfluorinated alkyl substances in indoor air using thermal desorption-gas chromatography-mass spectrometry. J Chromatogr A. 2012;1238:114–20.CrossRefGoogle Scholar
  23. 23.
    Bach C, Boiteux V, Hemard J, Colin A, Rosin C, Munoz JF, et al. Simultaneous determination of perfluoroalkyl iodides, perfluoroalkane sulfonamides, fluorotelomer alcohols, fluorotelomer iodides and fluorotelomer acrylates and methacrylates in water and sediments using solid-phase microextraction-gas chromatography/mas. J Chromatogr A. 2016;1448:98–106.CrossRefGoogle Scholar
  24. 24.
    Lacina O, Hradkova P, Pulkrabova J, Hajslova J. Simple, high throughput ultra-high performance liquid chromatography/tandem mass spectrometry trace analysis of perfluorinated alkylated substances in food of animal origin: milk and fish. J Chromatogr A. 2011;1218:4312–21.CrossRefGoogle Scholar
  25. 25.
    Gremmel C, Frömel T, Knepper TP. Systematic determination of perfluoroalkyl and polyfluoroalkyl substances (PFASs) in outdoor jackets. Chemosphere. 2016;160:173–80.CrossRefGoogle Scholar
  26. 26.
    Ayala-Cabrera JF, Moyano E, Santos FJ. Gas chromatography and liquid chromatography coupled to mass spectrometry for the determination of fluorotelomer olefins, fluorotelomer alcohols, perfluoroalkyl sulfonamides and sulfonamidoethanols in water. J Chromatogr A. 2019.  https://doi.org/10.1016/j.chroma.2019.460463.
  27. 27.
    Kuehl DW, Rozynov B. Chromatographic and mass spectral studies of perfluorooctanesulfonate and three perfluorooctanesulfonamides. Rapid Commun Mass Spectrom. 2003;17:2364–9.CrossRefGoogle Scholar
  28. 28.
    Arsenault G, Chittim B, McAlees A, McCrindle R, Potter D, Tashiro C, et al. Mass spectral studies of native and mass-labeled perfluorooctanesulfonamide. Rapid Commun Mass Spectrom. 2007;21:929–36.CrossRefGoogle Scholar
  29. 29.
    Ayala-Cabrera JF, Santos FJ, Moyano E. Negative-ion atmospheric pressure ionisation of semi-volatile fluorinated compounds for ultra-high-performance liquid chromatography tandem mass spectrometry analysis. Anal Bioanal Chem. 2018;410:4913–24.CrossRefGoogle Scholar
  30. 30.
    Rafaelli A, Saba A. Atmospheric pressure photoionization mass spectrometry. Mass Spectrom Rev. 2003;22:318–31.CrossRefGoogle Scholar
  31. 31.
    Wang C. The ionization technology of LC-MS, advantages of APPI on detection of PPCPs and hormones. Austin Chromatogr. 2015;2:1032–4.Google Scholar
  32. 32.
    Chu S, Letcher RJ. Analysis of fluorotelomer alcohols and perfluorinated sulfonamides in biotic samples by liquid chromatography-atmospheric pressure photoionization mass spectrometry. J Chromatogr A. 2018;1215:92–9.CrossRefGoogle Scholar
  33. 33.
    Zhou X, Zhang Y, Zhao S, Hsu CS, Shi Q. Observation of CO2 and solvent adduct ions during negative mode electrospray ionization Fourier transform ion cyclotron resonance mass spectrometric analysis of monohydric alcohols. Rapid Commun Mass Spectrom. 2013;27:2581–7.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Juan F. Ayala-Cabrera
    • 1
  • F. Javier Santos
    • 1
    • 2
  • Encarnación Moyano
    • 1
    • 2
    Email author
  1. 1.Department of Chemical Engineering and Analytical ChemistryUniversity of BarcelonaBarcelonaSpain
  2. 2.Research Institute in Water (IdRA)University of BarcelonaBarcelonaSpain

Personalised recommendations