Advertisement

Cu2+ ion-sensitive surface on graphite electrodes

  • Ignacio PedreEmail author
  • Lucila Paula Méndez De Leo
  • Graciela Alicia GonzálezEmail author
Research Paper
  • 38 Downloads

Abstract

A new electrochemical interface based on polyacrylic acid (PAAcid) immobilized in a Nafion® polymeric matrix on graphite screen-printed electrodes for detecting copper is presented. The copper is retained in the surface due to the capacity of the polyacid to chelate metals, and quantified using square wave voltammetry. The response was characterized by spectroscopic techniques (UV-vis-IR), which confirmed the chelation from the Cu2+ ions by the acid. A calibration curve is presented, showing good linearity and repeatability and its usefulness as a sensor. The range of operation goes from 15 to 50 μM, with a detection limit of 12 μM, making the sensor useful for measurements in environmental samples (after a preconcentration step) and in drinking water.

Keywords

Copper Sensitive interface Environmental electroanalysis FT-IR characterization 

Notes

Acknowledgments

This work was partially supported by UBA, CONICET, ANPCyT, and OPCW. L. M. and G. G. are research staff of CONICET. I. P. acknowledges CONICET for his postdoctoral fellowship. The authors wish to thank Jorge Diebra and Paula Orellano for getting the real seawater sample and Leonardo Carlos Autelli for getting the real river water sample.

References

  1. 1.
    Krstić V, Urošević T, Pešovski B. A review on adsorbents for treatment of water and wastewaters containing copper ions. Chem Eng Sci. 2018;192:273–87.  https://doi.org/10.1016/j.ces.2018.07.022.CrossRefGoogle Scholar
  2. 2.
    Ullah N, Mansha M, Khan I, Qurashi A. Nanomaterial-based optical chemical sensors for the detection of heavy metals in water: recent advances and challenges. TrAC Trends Anal Chem. 2018;100:155–66.  https://doi.org/10.1016/j.trac.2018.01.002.CrossRefGoogle Scholar
  3. 3.
    Khairy GM, Duerkop A. Dipsticks and sensor microtiterplate for determination of copper (II) in drinking water using reflectometric RGB readout of digital images, fluorescence or eye-vision. Sensors Actuators B Chem. 2019;281:878–84.  https://doi.org/10.1016/j.snb.2018.10.147.CrossRefGoogle Scholar
  4. 4.
    Song P, Xiang Y, Wei R, Tong A. A fluorescent chemosensor for Cu2+ detection in solution based on aggregation-induced emission and its application in fabricating Cu2+ test papers. J Lumin. 2014;153:215–20.  https://doi.org/10.1016/j.jlumin.2014.03.030.CrossRefGoogle Scholar
  5. 5.
    Justino CIL, Freitas AC, Duarte AC, Santos TAPR. Sensors and biosensors for monitoring marine contaminants. Trends Environ Anal Chem. 2015;6–7:21–30.  https://doi.org/10.1016/j.teac.2015.02.001.CrossRefGoogle Scholar
  6. 6.
    Stumm W, Morgan JJ. Aquatic chemistry: chemical equilibria and rates in natural waters. 3rd ed. New York: Wiley; 1996.Google Scholar
  7. 7.
    Rauch JN, Graedel TE. Earth’s anthrobiogeochemical copper cycle: COPPER CYCLE. Glob Biogeochem Cycles. 2007;21:n/a-n/a  https://doi.org/10.1029/2006GB002850.CrossRefGoogle Scholar
  8. 8.
    dos Santos Carlos F, Nunes MC, De Boni L, Machado GS, Nunes FS. A novel fluorene-derivative Schiff-base fluorescent sensor for copper(II) in organic media. J Photochem Photobiol A Chem. 2017;348:41–6.  https://doi.org/10.1016/j.jphotochem.2017.08.022.CrossRefGoogle Scholar
  9. 9.
    Santos IC, Mesquita RBR, Rangel AOSS. Micro solid phase spectrophotometry in a sequential injection lab-on-valve platform for cadmium, zinc, and copper determination in freshwaters. Anal Chim Acta. 2015;891:171–8.  https://doi.org/10.1016/j.aca.2015.08.021.CrossRefPubMedGoogle Scholar
  10. 10.
    Frag EY, Mohamed MEB, Fahim EM. Application of carbon sensors for potentiometric determination of copper(II) in water and biological fluids of Wilson disease patients. Studying the surface reaction using SEM, EDX, IR and DFT. Biosens Bioelectron. 2018;118:122–8.  https://doi.org/10.1016/j.bios.2018.07.024.CrossRefPubMedGoogle Scholar
  11. 11.
    Herzog G, Moujahid W, Twomey K, Lyons C, Ogurtsov VI. On-chip electrochemical microsystems for measurements of copper and conductivity in artificial seawater. Talanta. 2013;116:26–32.  https://doi.org/10.1016/j.talanta.2013.04.057.CrossRefPubMedGoogle Scholar
  12. 12.
    Kayarkatte MK, Delikaya Ö, Roth C. Polyacrylic acid-Nafion composites as stable catalyst support in PEM fuel cell electrodes. Mater Today Commun. 2018;16:8–13.  https://doi.org/10.1016/j.mtcomm.2018.02.003.CrossRefGoogle Scholar
  13. 13.
    Kefala G, Economou A, Voulgaropoulos A. A study of Nafion-coated bismuth-film electrodes for the determination of trace metals by anodic stripping voltammetry. Analyst. 2004;129:1082.  https://doi.org/10.1039/b404978k.CrossRefPubMedGoogle Scholar
  14. 14.
    Papadopoulou NA, Florou AB, Prodromidis MI. Sensitive determination of iron using disposable Nafion-coated screen-printed graphite electrodes. Anal Lett. 2018;51:198–208.  https://doi.org/10.1080/00032719.2017.1302464.CrossRefGoogle Scholar
  15. 15.
    Vlassiouk I, Takmakov P, Smirnov S. Sensing DNA hybridization via ionic conductance through a nanoporous electrode. Langmuir. 2005;21:4776–8.  https://doi.org/10.1021/la0471644.CrossRefPubMedGoogle Scholar
  16. 16.
    González G, Priano G, Günther M, Battaglini F. Mass transport effect of mesoscopic domains in the amperometric response of an electroactive species: modeling for its applications in biomolecule detection. Sensors Actuators B Chem. 2010;144:349–53.  https://doi.org/10.1016/j.snb.2008.11.006.CrossRefGoogle Scholar
  17. 17.
    El-Hashani A, Toutianoush A, Tieke B. Layer-by-layer assembled membranes of protonated 18-azacrown-6 and polyvinylsulfate and their application for highly efficient anion separation. J Phys Chem B. 2007;111:8582–8.  https://doi.org/10.1021/jp0688052.CrossRefPubMedGoogle Scholar
  18. 18.
    Macanás J, Ouyang L, Bruening ML, Muñoz M, Remigy J-C, Lahitte J-F. Development of polymeric hollow fiber membranes containing catalytic metal nanoparticles. Catal Today. 2010;156:181–6.  https://doi.org/10.1016/j.cattod.2010.02.036.CrossRefGoogle Scholar
  19. 19.
    Jain P, Baker GL, Bruening ML. Applications of polymer brushes in protein analysis and purification. Annu Rev Anal Chem. 2009;2:387–408.  https://doi.org/10.1146/annurev-anchem-060908-155153.CrossRefGoogle Scholar
  20. 20.
    Priano G, González G, Günther M, Battaglini F. Disposable gold electrode array for simultaneous electrochemical studies. Electroanalysis. 2008;20:91–7.  https://doi.org/10.1002/elan.200704061.CrossRefGoogle Scholar
  21. 21.
    Mbareck C, Nguyen QT, Alaoui OT, Barillier D. Elaboration, characterization and application of polysulfone and polyacrylic acid blends as ultrafiltration membranes for removal of some heavy metals from water. J Hazard Mater. 2009;171:93–101.  https://doi.org/10.1016/j.jhazmat.2009.05.123.CrossRefPubMedGoogle Scholar
  22. 22.
    Bala T, Prasad BLV, Sastry M, Kahaly MU, Waghmare UV. Interaction of different metal ions with carboxylic acid group: a quantitative study. J Phys Chem A. 2007;111:6183–90.  https://doi.org/10.1021/jp067906x.CrossRefPubMedGoogle Scholar
  23. 23.
    Mehandzhiyski AY, Riccardi E, van Erp TS, Koch H, Åstrand P-O, Trinh TT, et al. Density functional theory study on the interactions of metal ions with long chain deprotonated carboxylic acids. J Phys Chem A. 2015;119:10195–203.  https://doi.org/10.1021/acs.jpca.5b04136.CrossRefPubMedGoogle Scholar
  24. 24.
    Basolo F, Johnson R. Coordination Chemistry. St Lucie Press; 1986.Google Scholar
  25. 25.
    Kosseoglou D, Kokkinofta R, Sazou D. FTIR spectroscopic characterization of Nafion®–polyaniline composite films employed for the corrosion control of stainless steel. J Solid State Electrochem. 2011;15:2619–31.  https://doi.org/10.1007/s10008-010-1241-3.CrossRefGoogle Scholar
  26. 26.
    Li W, Zhao H, Teasdale PR, John R, Zhang S. Synthesis and characterisation of a polyacrylamide–polyacrylic acid copolymer hydrogel for environmental analysis of Cu and Cd. React Funct Polym. 2002;52:31–41.  https://doi.org/10.1016/S1381-5148(02)00055-X.CrossRefGoogle Scholar
  27. 27.
    Hu H, Saniger J, Garcia-Alejandre J, Castaño VM. Fourier transform infrared spectroscopy studies of the reaction between polyacrylic acid and metal oxides. Mater Lett. 1991;12:281–5.  https://doi.org/10.1016/0167-577X(91)90014-W.CrossRefGoogle Scholar
  28. 28.
    Lin-Vien D, editor. The handbook of infrared and raman characteristic frequencies of organic molecules. Boston: Academic Press; 1991.Google Scholar
  29. 29.
    Nakamoto K. Infrared and Raman spectra of inorganic and coordination compounds. 6th ed. Hoboken: Wiley; 2009.Google Scholar
  30. 30.
    Smith EL, Alves CA, Anderegg JW, Porter MD, Siperko LM. Deposition of metal overlayers at end-group-functionalized thiolate monolayers adsorbed at Au. 1. Surface and interfacial chemical characterization of deposited Cu overlayers at carboxylic acid-terminated structures. Langmuir. 1992;8:2707–14.CrossRefGoogle Scholar
  31. 31.
    British Standard ISO 11843-2:2000, Capability of detection, Part 2: Methodology in the linear calibration case.Google Scholar
  32. 32.
    Tatone LM, Bilos C, Skorupka CN, Colombo JC. Trace metal behavior along fluvio-marine gradients in the Samborombón Bay, outer Río de la Plata estuary, Argentina. Cont Shelf Res. 2015;96:27–33.  https://doi.org/10.1016/j.csr.2015.01.007.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.INQUIMAE – Departamento de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y NaturalesUniversidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad UniversitariaBuenos AiresArgentina

Personalised recommendations