Analytical and Bioanalytical Chemistry

, Volume 411, Issue 27, pp 7177–7185 | Cite as

Lysin cell-binding domain-functionalized magnetic beads for detection of Staphylococcus aureus via inhibition of fluorescence of Amplex Red/hydrogen peroxide assay by intracellular catalase

  • Zhengjun Yi
  • Shuhui Wang
  • Xiangying Meng
  • Anqi Wu
  • Qian Li
  • Yongjie Song
  • Ronglan ZhaoEmail author
  • Jinjuan QiaoEmail author
Research Paper


Accurate and rapid identification of Staphylococcus aureus (S. aureus) is of great significance for controlling the food poisoning and infectious diseases caused by S. aureus. In this study, a novel strategy that combines lysin cell-binding domain (CBD)-based magnetic separation with fluorescence detection was developed for the specific and sensitive quantification of S. aureus in authentic samples. The S. aureus cells were separated from the sample matrix by lysin CBD-functionalized magnetic beads. Following lysis by lysostaphin, intracellular catalase was released from S. aureus cells and detected by a fluorometric system composed of horseradish peroxidase (HRP), hydrogen peroxide (H2O2), and Amplex Red. S. aureus was quantified via the inhibitory effect of the released intracellular catalase on the fluorometric system since the catalase could decompose the H2O2. Optimized conditions afforded a calibration curve for S. aureus ranging from 1.0 × 102 to 1.0 × 107 CFU mL−1. The detection limit was as low as 78 CFU mL−1 in phosphate-buffered saline (PBS), and the total detection process could be completed in less than 50 min. Other bacteria associated with common food-borne and nosocomial infections negligibly interfered with S. aureus detection, except for Staphylococcus epidermidis, which may have slightly interfered. Moreover, the potential of this proposed method for practical applications has been demonstrated by detection assays of sterilized milk and human serum.

Graphical abstract


Staphylococcus aureus Lysin cell-binding domain Magnetic separation Catalase Amplex Red 


Funding information

This work was supported by the Natural Science Foundation of Shandong Province, China (Grant Nos. ZR2017LH057 and ZR2018ZC1054), and the National Natural Science Foundation of China (Grant Nos. 81770915 and 81802054).

Compliance with ethical standards

Informed consent for the human serum used in this study was obtained from the individual participants according to the World Medical Association Declaration of Helsinki. The studies have been approved by the ethics committee of Weifang Medical University and have been performed in accordance with the ethical standards.

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

216_2019_2099_MOESM1_ESM.pdf (1.3 mb)
ESM 1 (PDF 1281 kb)


  1. 1.
    Yu J, Zhang Y, Zhang Y, Li H, Yang H, Wei H. Sensitive and rapid detection of Staphylococcus aureus in milk via cell binding domain of lysin. Biosens Bioelectron. 2016;77:366–71.CrossRefGoogle Scholar
  2. 2.
    Meng X, Yang G, Li F, Liang T, Lai W, Xu H. Sensitive detection of Staphylococcus aureus with vancomycin-conjugated magnetic beads as enrichment carriers combined with flow cytometry. ACS Appl Mater Interfaces. 2017;9(25):21464–72.CrossRefGoogle Scholar
  3. 3.
    Zanardi G, Caminiti A, Delle Donne G, Moroni P, Santi A, Galletti G, et al. Short communication: comparing real-time PCR and bacteriological cultures for Streptococcus agalactiae and Staphylococcus aureus in bulk-tank milk samples. J Dairy Sci. 2014;97(9):5592–8.CrossRefGoogle Scholar
  4. 4.
    Chang YC, Yang CY, Sun RL, Cheng YF, Kao WC, Yang PC. Rapid single cell detection of Staphylococcus aureus by aptamer-conjugated gold nanoparticles. Sci Rep. 2013;3:1863.CrossRefGoogle Scholar
  5. 5.
    Cheng D, Yu MQ, Fu F, Han WY, Li G, Xie JP, et al. Dual recognition strategy for specific and sensitive detection of bacteria using aptamer-coated magnetic beads and antibiotic-capped gold nanoclusters. Anal Chem. 2016;88(1):820–5.CrossRefGoogle Scholar
  6. 6.
    Houhoula D, Papaparaskevas J, Zatsou K, Nikolaras N, Malkawi HI, Mingenot-Leclercq MP, et al. Magnetic nanoparticle-enhanced PCR for the detection and identification of Staphylococcus aureus and Salmonella enteritidis. New Microbiol. 2017;40(3):165–9.PubMedGoogle Scholar
  7. 7.
    Chelikani P, Fita I, Loewen PC. Diversity of structures and properties among catalases. Cell Mol Life Sci. 2004;61(2):192–208.CrossRefGoogle Scholar
  8. 8.
    Lagos J, Alarcon P, Benadof D, Ulloa S, Fasce R, Tognarelli J, et al. Novel nonsense mutation in the katA gene of a catalase-negative Staphylococcus aureus strain. Braz J Microbiol. 2016;47(1):177–80.CrossRefGoogle Scholar
  9. 9.
    Sung YJ, Suk HJ, Sung HY, Li T, Poo H, Kim MG. Novel antibody/gold nanoparticle/magnetic nanoparticle nanocomposites for immunomagnetic separation and rapid colorimetric detection of Staphylococcus aureus in milk. Biosens Bioelectron. 2013;43:432–9.CrossRefGoogle Scholar
  10. 10.
    Qiao J, Meng X, Sun Y, Li Q, Zhao R, Zhang Y, et al. Aptamer-based fluorometric assay for direct identification of methicillin-resistant Staphylococcus aureus from clinical samples. J Microbiol Methods. 2018;153:92–8.CrossRefGoogle Scholar
  11. 11.
    Wang X, Du Y, Li Y, Li D, Sun R. Fluorescent identification and detection of Staphylococcus aureus with carboxymethyl chitosan/CdS quantum dots bioconjugates. J Biomater Sci Polym Ed. 2011;22(14):1881–93.CrossRefGoogle Scholar
  12. 12.
    Kong W, Xiong J, Yue H, Fu Z. Sandwich fluorimetric method for specific detection of Staphylococcus aureus based on antibiotic-affinity strategy. Anal Chem. 2015;87(19):9864–8.CrossRefGoogle Scholar
  13. 13.
    Duan N, Wu S, Zhu C, Ma X, Wang Z, Yu Y, et al. Dual-color upconversion fluorescence and aptamer-functionalized magnetic nanoparticles-based bioassay for the simultaneous detection of Salmonella Typhimurium and Staphylococcus aureus. Anal Chim Acta. 2012;723:1–6.CrossRefGoogle Scholar
  14. 14.
    Abbaspour A, Norouz-Sarvestani F, Noori A, Soltani N. Aptamer-conjugated silver nanoparticles for electrochemical dual-aptamer-based sandwich detection of staphylococcus aureus. Biosens Bioelectron. 2015;68:149–55.CrossRefGoogle Scholar
  15. 15.
    He X, Li Y, He D, Wang K, Shangguan J, Shi H. Aptamer-fluorescent silica nanoparticles bioconjugates based dual-color flow cytometry for specific detection of Staphylococcus aureus. J Biomed Nanotechnol. 2014;10(7):1359–68.CrossRefGoogle Scholar
  16. 16.
    Yu M, Wang H, Fu F, Li L, Li J, Li G, et al. Dual-recognition Forster resonance energy transfer based platform for one-step sensitive detection of pathogenic bacteria using fluorescent vancomycin-gold nanoclusters and aptamer-gold nanoparticles. Anal Chem. 2017;89(7):4085–90.CrossRefGoogle Scholar
  17. 17.
    Kell AJ, Stewart G, Ryan S, Peytavi R, Boissinot M, Huletsky A, et al. Vancomycin-modified nanoparticles for efficient targeting and preconcentration of Gram-positive and Gram-negative bacteria. ACS Nano. 2008;2(9):1777–88.CrossRefGoogle Scholar
  18. 18.
    Wu Y, Wang M, Ouyang H, He Y, Zhao X, Fu Z. Teicoplanin-functionalized magnetic beads for detection of Staphylococcus aureus via inhibition of the luminol chemiluminescence by intracellular catalase. Mikrochim Acta. 2018;185(8):391.CrossRefGoogle Scholar
  19. 19.
    Zhong D, Zhuo Y, Feng Y, Yang X. Employing carbon dots modified with vancomycin for assaying Gram-positive bacteria like Staphylococcus aureus. Biosens Bioelectron. 2015;74:546–53.CrossRefGoogle Scholar
  20. 20.
    Yan C, Zhang Y, Yang H, Yu J, Wei H. Combining phagomagnetic separation with immunoassay for specific, fast and sensitive detection of Staphylococcus aureus. Talanta. 2017;170:291–7.CrossRefGoogle Scholar
  21. 21.
    Pierce CL, Rees JC, Fernandez FM, Barr JR. Detection of Staphylococcus aureus using 15N-labeled bacteriophage amplification coupled with matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry. Anal Chem. 2011;83(6):2286–93.CrossRefGoogle Scholar
  22. 22.
    Toh SY, Citartan M, Gopinath SCB, Tang TH. Aptamers as a replacement for antibodies in enzyme-linked immunosorbent assay. Biosens Bioelectron. 2015;64:392–403.CrossRefGoogle Scholar
  23. 23.
    Hanif A, Farooq R, Rehman MU, Khan R, Majid S, Ganaie MA. Aptamer based nanobiosensors: promising healthcare devices. Saudi Pharm J. 2019;27(3):312–9.CrossRefGoogle Scholar
  24. 24.
    Singh A, Arutyunov D, Szymanski CM, Evoy S. Bacteriophage based probes for pathogen detection. Analyst. 2012;137(15):3405–21.CrossRefGoogle Scholar
  25. 25.
    Yang H, Wang DB, Dong Q, Zhang Z, Cui Z, Deng J, et al. Existence of separate domains in lysin PlyG for recognizing Bacillus anthracis spores and vegetative cells. Antimicrob Agents Chemother. 2012;56(10):5031–9.CrossRefGoogle Scholar
  26. 26.
    Loessner MJ, Kramer K, Ebel F, Scherer S. C-terminal domains of Listeria monocytogenes bacteriophage murein hydrolases determine specific recognition and high-affinity binding to bacterial cell wall carbohydrates. Mol Microbiol. 2002;44(2):335–49.CrossRefGoogle Scholar
  27. 27.
    Bai J, Kim YT, Ryu S, Lee JH. Biocontrol and rapid detection of food-borne pathogens using bacteriophages and endolysins. Front Microbiol. 2016;7:474.PubMedPubMedCentralGoogle Scholar
  28. 28.
    Walcher G, Stessl B, Wagner M, Eichenseher F, Loessner MJ, Hein I. Evaluation of paramagnetic beads coated with recombinant Listeria phage endolysin-derived cell-wall-binding domain proteins for separation of Listeria monocytogenes from raw milk in combination with culture-based and real-time polymerase chain reaction-based quantification. Foodborne Pathog Dis. 2010;7(9):1019–24.CrossRefGoogle Scholar
  29. 29.
    Kong M, Sim J, Kang T, Nguyen HH, Park HK, Chung BH, et al. A novel and highly specific phage endolysin cell wall binding domain for detection of Bacillus cereus. Eur Biophys J. 2015;44(6):437–46.CrossRefGoogle Scholar
  30. 30.
    Tolba M, Ahmed MU, Tlili C, Eichenseher F, Loessner MJ, Zourob M. A bacteriophage endolysin-based electrochemical impedance biosensor for the rapid detection of Listeria cells. Analyst. 2012;137(24):5749–56.CrossRefGoogle Scholar
  31. 31.
    Yoong P, Schuch R, Nelson D, Fischetti VA. Identification of a broadly active phage lytic enzyme with lethal activity against antibiotic-resistant Enterococcus faecalis and Enterococcus faecium. J Bacteriol. 2004;186(14):4808–12.CrossRefGoogle Scholar
  32. 32.
    Qiao J, Li Y, Wei C, Yang H, Yu J, Wei H. Rapid detection of viral antibodies based on multifunctional Staphylococcus aureus nanobioprobes. Enzym Microb Technol. 2016;95:94–9.CrossRefGoogle Scholar
  33. 33.
    Chandra Ojha S, Imtong C, Meetum K, Sakdee S, Katzenmeier G, Angsuthanasombat C. Purification and characterization of the antibacterial peptidase lysostaphin from Staphylococcus simulans: adverse influence of Zn(2+) on bacteriolytic activity. Protein Expr Purif. 2018;151:106–12.CrossRefGoogle Scholar
  34. 34.
    Zhou M, Diwu Z, Panchuk-Voloshina N, Haugland RP. A stable nonfluorescent derivative of resorufin for the fluorometric determination of trace hydrogen peroxide: applications in detecting the activity of phagocyte NADPH oxidase and other oxidases. Anal Biochem. 1997;253(2):162–8.CrossRefGoogle Scholar
  35. 35.
    Wang N, Miller CJ, Wang P, Waite TD. Quantitative determination of trace hydrogen peroxide in the presence of sulfide using the Amplex Red/horseradish peroxidase assay. Anal Chim Acta. 2017;963:61–7.CrossRefGoogle Scholar
  36. 36.
    Dong Q, Wang J, Yang H, Wei C, Yu J, Zhang Y, et al. Construction of a chimeric lysin Ply187N-V12C with extended lytic activity against staphylococci and streptococci. Microb Biotechnol. 2015;8(2):210–20.CrossRefGoogle Scholar
  37. 37.
    Boksha IS, Lavrova NV, Grishin AV, Demidenko AV, Lyashchuk AM, Galushkina ZM, et al. Staphylococcus simulans recombinant lysostaphin: production, purification, and determination of antistaphylococcal activity. Biochemistry (Mosc). 2016;81(5):502–10.CrossRefGoogle Scholar
  38. 38.
    Wu JA, Kusuma C, Mond JJ, Kokai-Kun JF. Lysostaphin disrupts Staphylococcus aureus and Staphylococcus epidermidis biofilms on artificial surfaces. Antimicrob Agents Chemother. 2003;47(11):3407–14.CrossRefGoogle Scholar
  39. 39.
    Over U, Tuc Y, Soyletir G. Catalase-negative Staphylococcus aureus: a rare isolate of human infection. Clin Microbiol Infect. 2000;6(12):681–2.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Zhengjun Yi
    • 1
  • Shuhui Wang
    • 2
  • Xiangying Meng
    • 1
  • Anqi Wu
    • 1
  • Qian Li
    • 1
  • Yongjie Song
    • 1
  • Ronglan Zhao
    • 1
    Email author
  • Jinjuan Qiao
    • 1
    Email author
  1. 1.Department of Medical LaboratoryWeifang Medical UniversityWeifangChina
  2. 2.Department of Cardiovascular MedicineWeifang People’s HospitalWeifangChina

Personalised recommendations