Advertisement

Analytical and Bioanalytical Chemistry

, Volume 411, Issue 27, pp 7087–7094 | Cite as

Quantitative evaluation of liposomal doxorubicin and its metabolites in spheroids

  • Jessica K. Lukowski
  • Amanda B. HummonEmail author
Research Paper

Abstract

Accurate measurement and understanding of therapeutic uptake and metabolism is key in the drug development process. This work examines the amount of doxorubicin that can penetrate into spheroids after being encapsulated in a liposomal configuration in comparison with free drug. Through a process known as serial trypsinization, three distinct cellular populations of a spheroid were successfully separated and a small molecule extraction was used to isolate the chemotherapeutic. Doxorubicin showed a time-dependent permeability into spheroids with the most drug accumulating in the core at 24 h of treatment. Entrapment of the chemotherapeutic delayed the permeability of the drug and resulted in reduced amounts quantified at the earlier time points. These findings validate the claim that liposomal therapeutics have the ability to alter the pharmacokinetics and pharmacodynamics profiles of a drug while also demonstrating the combined power of mass spectrometry and three-dimensional cell cultures to evaluate drug penetration and metabolism.

Graphical abstract

Keywords

nLC-MS/MS 3D cell cultures Doxorubicin Liposomal drug delivery 

Notes

Acknowledgments

The authors thank Matt Bernier and the Campus Chemical Instrument Center at Ohio State University for help with the analysis of the samples. A.H. and J.L. were supported by the National Science Foundation (CAREER Award, No. CHE-1351595).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

216_2019_2084_MOESM1_ESM.pdf (631 kb)
ESM 1 (PDF 631 kb)

References

  1. 1.
    Trédan O, Galmarini CM, Patel K, Tannock IF. Drug resistance and the solid tumor microenvironment. J Natl Cancer Inst. 2007;99:1441–54.  https://doi.org/10.1093/jnci/djm135.CrossRefPubMedGoogle Scholar
  2. 2.
    Lammers T, Kiessling F, Hennink WE, Storm G. Drug targeting to tumors: principles, pitfalls and (pre-) clinical progress. J Control Release. 2012;161:175–87.  https://doi.org/10.1016/j.jconrel.2011.09.063.CrossRefPubMedGoogle Scholar
  3. 3.
    Mehta G, Hsiao AY, Ingram M, Luker GD, Takayama S. Opportunities and challenges for use of tumor spheroids as models to test drug delivery and efficacy. J Control Release. 2012;164:192–204.  https://doi.org/10.1016/j.jconrel.2012.04.045.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Pampaloni F, Reynaud EG, Stelzer EHK. The third dimension bridges the gap between cell culture and live tissue. Nat Rev Mol Cell Biol. 2007;8:839–45.  https://doi.org/10.1038/nrm2236.CrossRefPubMedGoogle Scholar
  5. 5.
    LaBonia GJ, Ludwig KR, Mousseau CB, Hummon AB. iTRAQ quantitative proteomic profiling and MALDI–MSI of colon cancer spheroids treated with combination chemotherapies in a 3D printed fluidic device. Anal Chem. 2018;90:1423–30.  https://doi.org/10.1021/acs.analchem.7b04969.CrossRefPubMedGoogle Scholar
  6. 6.
    Schroll MM, LaBonia GJ, Ludwig KR, Hummon AB. Glucose restriction combined with autophagy inhibition and chemotherapy in HCT 116 spheroids decreases cell clonogenicity and viability regulated by tumor suppressor genes. J Proteome Res. 2017;16:3009–18.  https://doi.org/10.1021/acs.jproteome.7b00293.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Schroll M, Ludwig K, Bauer K, Hummon A. Calcitriol supplementation causes decreases in tumorigenic proteins and different proteomic and metabolomic signatures in right versus left-sided colon cancer. Metabolites. 2018;8:5.  https://doi.org/10.3390/metabo8010005.CrossRefPubMedCentralGoogle Scholar
  8. 8.
    Lukowski JK, Weaver EM, Hummon AB. Analyzing liposomal drug delivery systems in three-dimensional cell culture models using MALDI imaging mass spectrometry. Anal Chem. 2017;89:8453–8.  https://doi.org/10.1021/acs.analchem.7b02006.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Schroll MM, Liu X, Herzog SK, Skube SB, Hummon AB. Nutrient restriction of glucose or serum results in similar proteomic expression changes in 3D colon cancer cell cultures. Nutr Res. 2016;36:1068–80.  https://doi.org/10.1016/j.nutres.2016.08.002.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Feist PE, Sidoli S, Liu X, Schroll MM, Rahmy S, Fujiwara R, et al. Multicellular tumor spheroids combined with mass spectrometric histone analysis to evaluate epigenetic drugs. Anal Chem. 2017;89:2773–81.  https://doi.org/10.1021/acs.analchem.6b03602.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Liu X, Hummon AB. Chemical imaging of platinum-based drugs and their metabolites. Sci Rep. 2016;6:38507.  https://doi.org/10.1038/srep38507.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Liu X, Flinders C, Mumenthaler SM, Hummon AB. MALDI mass spectrometry imaging for evaluation of therapeutics in colorectal tumor organoids. J Am Soc Mass Spectrom. 2018;29:516–26.  https://doi.org/10.1007/s13361-017-1851-4.CrossRefPubMedGoogle Scholar
  13. 13.
    Yue X, Lukowski JK, Weaver EM, Skube SB, Hummon AB. Quantitative proteomic and phosphoproteomic comparison of 2D and 3D colon cancer cell culture models. J Proteome Res. 2016;15:4265–76.  https://doi.org/10.1021/acs.jproteome.6b00342.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Sutherland RM, Sordat B, Bamat J, Gabbert H, Bourrat B, Mueller-Klieser W. Oxygenation and differentiation in multicellular spheroids of human colon carcinoma. Cancer Res. 1986;46:5320–9.PubMedGoogle Scholar
  15. 15.
    Freyer JP, Sutherland RM. Selective dissociation and characterization of cells from different regions of multicell tumor spheroids. Cancer Res. 1980;40:3956–65.PubMedGoogle Scholar
  16. 16.
    Sutherland RM. Cell and environment interactions in tumor microregions: the multicell spheroid model. Science. 1988;240:177–84.CrossRefGoogle Scholar
  17. 17.
    Weigelt B, Ghajar CM, Bissell MJ. The need for complex 3D culture models to unravel novel pathways and identify accurate biomarkers in breast cancer. Adv Drug Deliv Rev. 2014;69–70:42–51.  https://doi.org/10.1016/j.addr.2014.01.001.CrossRefPubMedGoogle Scholar
  18. 18.
    Vidi P-A, Bissell MJ, Lelièvre SA. Three-dimensional culture of human breast epithelial cells: the how and the why. Methods Mol Biol. 2013;945:193–219.  https://doi.org/10.1007/978-1-62703-125-7_13.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Hirschhaeuser F, Menne H, Dittfeld C, West J, Mueller-Klieser W, Kunz-Schughart LA. Multicellular tumor spheroids: an underestimated tool is catching up again. J Biotechnol. 2010;148:3–15.  https://doi.org/10.1016/j.jbiotec.2010.01.012.CrossRefPubMedGoogle Scholar
  20. 20.
    Liu X, Hummon AB. Quantitative determination of irinotecan and the metabolite SN-38 by nanoflow liquid chromatography-tandem mass spectrometry in different regions of multicellular tumor spheroids. J Am Soc Mass Spectrom. 2015;26:577–86.  https://doi.org/10.1007/s13361-014-1071-0.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Liu X, Weaver EM, Hummon AB. Evaluation of therapeutics in three-dimensional cell culture systems by MALDI imaging mass spectrometry. Anal Chem. 2013;85:6295–302.  https://doi.org/10.1021/ac400519c.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Allen TM, Cullis PR. Liposomal drug delivery systems: from concept to clinical applications. Adv Drug Deliv Rev. 2013;65:36–48.  https://doi.org/10.1016/j.addr.2012.09.037.CrossRefGoogle Scholar
  23. 23.
    Lombardo D, Calandra P, Barreca D, Magazù S, Kiselev M. Soft interaction in liposome nanocarriers for therapeutic drug delivery. Nanomaterials. 2016;6:125.  https://doi.org/10.3390/nano6070125.CrossRefPubMedCentralGoogle Scholar
  24. 24.
    Sercombe L, Veerati T, Moheimani F, Wu SY, Sood AK, Hua S. Advances and challenges of liposome assisted drug delivery. Front Pharmacol. 2015.  https://doi.org/10.3389/fphar.2015.00286.
  25. 25.
    Nagayasu A, Uchiyama K, Kiwada H. The size of liposomes: a factor which affects their targeting efficiency to tumors and therapeutic activity of liposomal antitumor drugs. Adv Drug Deliv Rev. 1999;40:75–87.  https://doi.org/10.1016/S0169-409X(99)00041-1.CrossRefPubMedGoogle Scholar
  26. 26.
    Chowdhury S, Yusof F, Salim WWAW, Sulaiman N, Faruck MO. An overview of drug delivery vehicles for cancer treatment: nanocarriers and nanoparticles including photovoltaic nanoparticles. J Photochem Photobiol B Biol. 2016;164:151–9.  https://doi.org/10.1016/j.jphotobiol.2016.09.013.CrossRefGoogle Scholar
  27. 27.
    Felice B, Prabhakaran MP, Rodríguez AP, Ramakrishna S. Drug delivery vehicles on a nano-engineering perspective. Mater Sci Eng C. 2014;41:178–95.  https://doi.org/10.1016/j.msec.2014.04.049.CrossRefGoogle Scholar
  28. 28.
    Ventola CL. Progress in nanomedicine: approved and investigational nanodrugs. P T. 2017;42:742–55.PubMedPubMedCentralGoogle Scholar
  29. 29.
    Tekade RK, Maheshwari R, Soni N, Tekade M, Chougule MB. Nanotechnology for the development of nanomedicine. In: Nanotechnology-based approaches target. Deliv. Drugs Genes. Elsevier, pp 3–61, 2017.Google Scholar
  30. 30.
    van Vlerken LE, Duan Z, Little SR, Seiden MV, Amiji MM. Biodistribution and pharmacokinetic analysis of paclitaxel and ceramide administered in multifunctional polymer-blend nanoparticles in drug resistant breast cancer model. Mol Pharm. 2008;5:516–26.  https://doi.org/10.1021/mp800030k.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Danhier F. To exploit the tumor microenvironment: since the EPR effect fails in the clinic, what is the future of nanomedicine? J Control Release. 2016;244:108–21.  https://doi.org/10.1016/j.jconrel.2016.11.015.CrossRefPubMedGoogle Scholar
  32. 32.
    Danhier F, Feron O, Préat V. To exploit the tumor microenvironment: passive and active tumor targeting of nanocarriers for anti-cancer drug delivery. J Control Release. 2010;148:135–46.  https://doi.org/10.1016/j.jconrel.2010.08.027.CrossRefGoogle Scholar
  33. 33.
    Huang X, Peng X, Wang Y, Wang Y, Shin DM, El-Sayed MA, et al. A reexamination of active and passive tumor targeting by using rod-shaped gold nanocrystals and covalently conjugated peptide ligands. ACS Nano. 2010;4:5887–96.  https://doi.org/10.1021/nn102055s.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Tang Y, Soroush F, Sheffield JB, Wang B, Prabhakarpandian B, Kiani MF. A biomimetic microfluidic tumor microenvironment platform mimicking the EPR effect for rapid screening of drug delivery systems. Sci Rep. 2017;7:9359.  https://doi.org/10.1038/s41598-017-09815-9.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Seok J, Warren HS, Cuenca AG, Mindrinos MN, Baker HV, Xu W, et al. Genomic responses in mouse models poorly mimic human inflammatory diseases. Proc Natl Acad Sci. 2013;110:3507–12.  https://doi.org/10.1073/pnas.1222878110.CrossRefPubMedGoogle Scholar
  36. 36.
    Prabhakarpandian B, Shen M-C, Nichols JB, Garson CJ, Mills IR, Matar MM, et al. Synthetic tumor networks for screening drug delivery systems. J Control Release. 2015;201:49–55.  https://doi.org/10.1016/j.jconrel.2015.01.018.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Farokhzad OC, Langer R. Impact of nanotechnology on drug delivery. ACS Nano. 2009;3:16–20.  https://doi.org/10.1021/nn900002m.CrossRefPubMedGoogle Scholar
  38. 38.
    Lu H, Utama RH, Kitiyotsawat U, Babiuch K, Jiang Y, Stenzel MH. Enhanced transcellular penetration and drug delivery by crosslinked polymeric micelles into pancreatic multicellular tumor spheroids. Biomater Sci. 2015;3:1085–95.  https://doi.org/10.1039/C4BM00323C.CrossRefPubMedGoogle Scholar
  39. 39.
    Liu Z, Bi Y, Sun Y, Hao F, Lu J, Meng Q, et al. Pharmacokinetics of a liposomal formulation of doxorubicin in rats. Saudi Pharm J. 2017;25:531–6.  https://doi.org/10.1016/j.jsps.2017.04.019.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Friedrich J, Seidel C, Ebner R, Kunz-Schughart LA. Spheroid-based drug screen: considerations and practical approach. Nat Protoc. 2009;4:309–24.  https://doi.org/10.1038/nprot.2008.226.CrossRefPubMedGoogle Scholar
  41. 41.
    Ahlf Wheatcraft DR, Liu X, Hummon AB. Sample preparation strategies for mass spectrometry imaging of 3D cell culture models. J Vis Exp. 2014.  https://doi.org/10.3791/52313.
  42. 42.
    Li H, Hummon AB. Imaging mass spectrometry of three-dimensional cell culture systems. Anal Chem. 2011;83:8794–801.  https://doi.org/10.1021/ac202356g.CrossRefPubMedGoogle Scholar
  43. 43.
    Thorn CF, Oshiro C, Marsh S, Hernandez-Boussard T, McLeod H, Klein TE, et al. Doxorubicin pathways: pharmacodynamics and adverse effects. Pharmacogenet Genomics. 2011;21:440–6.  https://doi.org/10.1097/FPC.0b013e32833ffb56.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Mordente A, Meucci E, Silvestrini A, Martorana GE, Giardina B. New developments in anthracycline-induced cardiotoxicity. Curr Med Chem. 2009;16:1656–72.CrossRefGoogle Scholar
  45. 45.
    Minotti G. Reactions of adriamycin with microsomal iron and lipids. Free Radic Res Commun. 1989;7:143–8.CrossRefGoogle Scholar
  46. 46.
    Wang Y, Katzenmeyer JB, Arriaga EA. Combination of micellar electrokinetic and high-performance liquid chromatographies to assess age-related changes in the in vitro metabolism of Fischer 344 rat liver. J Gerontol Ser A. 2011;66A:935–43.  https://doi.org/10.1093/gerona/glr074.CrossRefGoogle Scholar
  47. 47.
    Vrignaud P, Londos-Gagliardi D, Robert J. Hepatic metabolism of doxorubicin in mice and rats. Eur J Drug Metab Pharmacokinet. 11:101–5.  https://doi.org/10.1007/BF03189834.CrossRefGoogle Scholar
  48. 48.
    Pollak N, Dölle C, Ziegler M. The power to reduce: pyridine nucleotides--small molecules with a multitude of functions. Biochem J. 2007;402:205–18.  https://doi.org/10.1042/BJ20061638.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Chemistry and BiochemistryUniversity of Notre DameNotre DameUSA
  2. 2.Department of Chemistry and Biochemistry and the Comprehensive Cancer CenterThe Ohio State UniversityColumbusUSA

Personalised recommendations