Advertisement

Analytical and Bioanalytical Chemistry

, Volume 411, Issue 26, pp 6995–7003 | Cite as

Novel probes for label-free detection of neurodegenerative GGGGCC repeats associated with amyotrophic lateral sclerosis

  • Motahareh Taki
  • Kushal J. Rohilla
  • Maria Barton
  • Madison Funneman
  • Najiyah Benzabeh
  • Swati Naphade
  • Lisa M. Ellerby
  • Keith T. Gagnon
  • Mohtashim H. ShamsiEmail author
Research Paper

Abstract

DNA repeat expansion sequences cause a myriad of neurological diseases when they expand beyond a critical threshold. Previous electrochemical approaches focused on the detection of trinucleotide repeats (CAG, CGG, and GAA) and relied on labeling of the probe and/or target strands or enzyme-linked assays. However, detection of expanded GC-rich sequences is challenging because they are prone to forming secondary structures such as cruciforms and quadruplexes. Here, we present label-free detection of hexanucleotide GGGGCC repeat sequences, which cause the leading genetic form of frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS). The approach relies on capturing targets by surface-bound oligonucleotide probes with a different number of complementary repeats, which proportionately translates the length of the target strands into charge transfer resistance (RCT) signal measured by electrochemical impedance spectroscopy. The probe carrying three tandem repeats transduces the number of repeats into RCT with a 3× higher calibration sensitivity and detection limit. Chronocoulometric measurements show a decrease in surface density with increasing repeat length, which is opposite of the impedance trend. This implies that the length of the target itself can contribute to amplification of the impedance signal independent of the surface density. Moreover, the probe can distinguish between a control and patient sequences while remaining insensitive to non-specific Huntington’s disease (CAG) repeats in the presence of a complementary target. This label-free strategy might be applied to detect the length of other neurodegenerative repeat sequences using short probes with a few complementary repeats.

Graphical abstract

Short oligomeric probes with multiple complementary repeats detect long neurodegenerative targets with high sensitivity and transduce into higher impedance signal.

Keywords

Nucleic acid biosensing Electrochemical biosensors Repeat expansion disorders Amyotrophic lateral sclerosis Electrochemical impedance spectroscopy 

Notes

Funding information

M.H. Shamsi acknowledges SIUC startup funds for the research. L.M. Ellerby acknowledges R01 NS100529 grant. Funding to K.T.G. was provided by an Amyotrophic Lateral Sclerosis Research Program (ALSRP) grant from the US Department of Defense.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

216_2019_2075_MOESM1_ESM.pdf (264 kb)
ESM 1 (PDF 263 kb)

References

  1. 1.
    The Genomes Project C, McVean GA e a. An integrated map of genetic variation from 1,092 human genomes. Nature. 2012;491:56.Google Scholar
  2. 2.
    Kozlowski P, de Mezer M, Krzyzosiak WJ. Trinucleotide repeats in human genome and exome. Nucleic Acids Res. 2010;38(12):4027–39.PubMedPubMedCentralGoogle Scholar
  3. 3.
    Rohilla KJ, Gagnon KT. RNA biology of disease-associated microsatellite repeat expansions. Acta Neuropathol Commun. 2017;5(1):63.PubMedPubMedCentralGoogle Scholar
  4. 4.
    Renton AE, Majounie E, Waite A, Simon-Sanchez J, Rollinson S, Gibbs JR, et al. A hexanucleotide repeat expansion in C9ORF72 is the cause of chromosome 9p21-linked ALS-FTD. Neuron. 2011;72(2):257–68.PubMedPubMedCentralGoogle Scholar
  5. 5.
    DeJesus-Hernandez M, Mackenzie IR, Boeve BF, Boxer AL, Baker M, Rutherford NJ, et al. Expanded GGGGCC hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p-linked FTD and ALS. Neuron. 2011;72(2):245–56.PubMedPubMedCentralGoogle Scholar
  6. 6.
    Buermans HPJ, den Dunnen JT. Next generation sequencing technology: advances and applications. Biochim Biophys Acta. 2014;1842(10):1932–41.PubMedGoogle Scholar
  7. 7.
    Orr HT, Zoghbi HY. Trinucleotide repeat disorders. Annu Rev Neurosci. 2007;30:575–621.PubMedGoogle Scholar
  8. 8.
    van Blitterswijk M, DeJesus-Hernandez M, Rademakers R. How do C9ORF72 repeat expansions cause amyotrophic lateral sclerosis and frontotemporal dementia: can we learn from other noncoding repeat expansion disorders? Curr Opin Neurol. 2012;25:689–700.PubMedPubMedCentralGoogle Scholar
  9. 9.
    Zhao X, Usdin K. The repeat expansion diseases: the dark side of DNA repair. DNA Repair. 2015;32:96–105.PubMedPubMedCentralGoogle Scholar
  10. 10.
    Chen LJ, Hadd A, Sah S, Filipovic-Sadic S, Krosting J, Sekinger E, et al. An information-rich CGG repeat primed PCR that detects the full range of fragile X expanded alleles and minimizes the need for southern blot analysis. J Mol Diagn. 2010;12(5):589–600.PubMedPubMedCentralGoogle Scholar
  11. 11.
    Loomis EW, Eid JS, Peluso P, Yin J, Hickey L, Rank D, et al. Sequencing the unsequenceable: expanded CGG-repeat alleles of the fragile X gene. Genome Res. 2013;23(1):121–8.PubMedPubMedCentralGoogle Scholar
  12. 12.
    Hubers A, Marroquin N, Schmoll B, Vielhaber S, Just M, Mayer B, et al. Polymerase chain reaction and southern blot-based analysis of the C9ORF72 hexanucleotide repeat in different motor neuron diseases. Neurobiol Aging. 2014;35(5):1214 e1–6.Google Scholar
  13. 13.
    Narzisi G, Schatz MC. The challenge of small-scale repeats for indel discovery. Front Bioeng Biotech. 2015;3:8.Google Scholar
  14. 14.
    Akimoto C, Volk AE, van Blitterswijk M, Van den Broeck M, Leblond CS, Lumbroso S, et al. A blinded international study on the reliability of genetic testing for GGGGCC-repeat expansions in C9orf72 reveals marked differences in results among 14 laboratories. J Med Genet. 2014;51(6):419–24.PubMedPubMedCentralGoogle Scholar
  15. 15.
    Buchman VL, Cooper-Knock J, Connor-Robson N, Higginbottom A, Kirby J, Razinskaya OD, et al. Simultaneous and independent detection of C9ORF72 alleles with low and high number of GGGGCC repeats using an optimised protocol of Southern blot hybridisation. Mol Neurodegener. 2013;8(1):12.PubMedPubMedCentralGoogle Scholar
  16. 16.
    Crook A, McEwen A, Fifita JA, Zhang K, Kwok JB, Halliday G, et al. The C9orf72 hexanucleotide repeat expansion presents a challenge for testing laboratories and genetic counseling. Amyotroph Lateral Scler Frontotemporal Degener. 2019;20(5–6):310–6.PubMedGoogle Scholar
  17. 17.
    Le Ber I. Genetics of frontotemporal lobar degeneration: an up-date and diagnosis algorithm. Rev Neurol. 2013;169(10):811–9.PubMedGoogle Scholar
  18. 18.
    Lunetta C, Lizio A, Melazzini MG, Maestri E, Sansone VA. Amyotrophic lateral sclerosis survival score (ALS-SS): a simple scoring system for early prediction of patient survival. Amyotroph Lateral Scler Frontotemporal Degener. 2015;17(1–2):93–100.PubMedGoogle Scholar
  19. 19.
    Park J-Y, Park S-M. DNA hybridization sensors based on electrochemical impedance spectroscopy as a detection tool. Sensors. 2009;9(12):9513.PubMedGoogle Scholar
  20. 20.
    Fojta M, Havran L, Vojtiskova M, Palecek E. Electrochemical detection of DNA triplet repeat expansion. J Am Chem Soc. 2004;126(21):6532–3.PubMedGoogle Scholar
  21. 21.
    Liu YL, Li J, Chang G, Zhu RZ, He HP, Zhang XH, et al. A novel electrochemical method based on screen-printed electrodes and magnetic beads for detection of trinucleotide repeat sequence d(CAG)(n). New J Chem. 2018;42(12):9757–63.Google Scholar
  22. 22.
    Zhu XQ, Li J, Lv HH, He HP, Liu H, Zhang XH, et al. Synthesis and characterization of a bifunctional nanoprobe for CGG trinucleotide repeat detection. RSC Adv. 2017;7(57):36124–31.Google Scholar
  23. 23.
    Li J, Liu Y, Zhu X, Chang G, He H, Zhang X, et al. A novel electrochemical biosensor based on a double-signal technique for d(CAG)n trinucleotide repeats. ACS Appl Mater Interfaces. 2017;9(50):44231–40.PubMedGoogle Scholar
  24. 24.
    He H, Xia J, Peng X, Chang G, Zhang X, Wang Y, et al. Facile electrochemical biosensor based on a new bifunctional probe for label-free detection of CGG trinucleotide repeat. Biosens Bioelectron. 2013;49:282–9.PubMedGoogle Scholar
  25. 25.
    He H, Peng X, Huang M, Chang G, Zhang X, Wang S. An electrochemical impedance sensor based on a small molecule modified Au electrode for the recognition of a trinucleotide repeat. Analyst. 2014;139(21):5482–7.PubMedGoogle Scholar
  26. 26.
    Fojta M, Havran L, Kizek R, Billova S, Palecek E. Multiply osmium-labeled reporter probes for electrochemical DNA hybridization assays: detection of trinucleotide repeats. Biosens Bioelectron. 2004;20(5):985–94.PubMedGoogle Scholar
  27. 27.
    Miroslav F, Petra B, Kateřina C, Petr P. A single-surface electrochemical biosensor for the detection of DNA triplet repeat expansion. Electroanalysis. 2006;18(2):141–51.Google Scholar
  28. 28.
    Yang IV, Thorp HH. Kinetics of metal-mediated one-electron oxidation of guanine in polymeric DNA and in oligonucleotides containing trinucleotide repeat sequences. Inorg Chem. 2000;39(21):4969–76.PubMedGoogle Scholar
  29. 29.
    Yang IV, Thorp HH. Modification of indium tin oxide electrodes with repeat polynucleotides: electrochemical detection of trinucleotide repeat expansion. Anal Chem. 2001;73(21):5316–22.PubMedGoogle Scholar
  30. 30.
    Kartje ZJ, Barkau CL, Rohilla KJ, Ageely EA, Gagnon KT. Chimeric guides probe and enhance Cas9 biochemical activity. Biochemistry. 2018;57(21):3027–31.PubMedGoogle Scholar
  31. 31.
    An MC, Zhang N, Scott G, Montoro D, Wittkop T, Mooney S, et al. Genetic correction of Huntington’s disease phenotypes in induced pluripotent stem cells. Cell Stem Cell. 2012;11(2):253–63.PubMedPubMedCentralGoogle Scholar
  32. 32.
    Shamsi MH, Kraatz H-B. The effects of oligonucleotide overhangs on the surface hybridization in DNA films: an impedance study. Analyst. 2011;136(15):3107–12.PubMedGoogle Scholar
  33. 33.
    Steel AB, Herne TM, Tarlov MJ. Electrochemical quantitation of DNA immobilized on gold. Anal Chem. 1998;70(22):4670–7.PubMedGoogle Scholar
  34. 34.
    Ge B, Huang Y-C, Sen D, Yu H-Z. Electrochemical investigation of DNA-modified surfaces: from quantitation methods to experimental conditions. J Electroanal Chem. 2007;602(2):156–62.Google Scholar
  35. 35.
    Capaldo P, Alfarano SR, Ianeselli L, Zilio SD, Bosco A, Parisse P, et al. Circulating disease biomarker detection in complex matrices: real-time, in situ measurements of DNA/miRNA hybridization via electrochemical impedance spectroscopy. ACS Sensors. 2016;1(8):1003–10.Google Scholar
  36. 36.
    Bertok T, Lorencova L, Chocholova E, Jane E, Vikartovska A, Kasak P, et al. Electrochemical impedance spectroscopy based biosensors: mechanistic principles, analytical examples and challenges towards commercialization for assays of protein cancer biomarkers. ChemElectroChem. 2019;6(4):989–1003.Google Scholar
  37. 37.
    Yang J, Jiao K, Yang T. A DNA electrochemical sensor prepared by electrodepositing zirconia on composite films of single-walled carbon nanotubes and poly(2,6-pyridinedicarboxylic acid), and its application to detection of the PAT gene fragment. Anal Bioanal Chem. 2007;389(3):913–21.PubMedGoogle Scholar
  38. 38.
    Kerman K, Morita Y, Takamura Y, Tamiya E. Escherichia coli single-strand binding protein–DNA interactions on carbon nanotube-modified electrodes from a label-free electrochemical hybridization sensor. Anal Bioanal Chem. 2005;381(6):1114–21.PubMedGoogle Scholar
  39. 39.
    Lisdat F, Schäfer D. The use of electrochemical impedance spectroscopy for biosensing. Anal Bioanal Chem. 2008;391(5):1555.PubMedGoogle Scholar
  40. 40.
    Ding S, Mosher C, Lee XY, Das SR, Cargill AA, Tang X, et al. Rapid and label-free detection of interferon gamma via an electrochemical aptasensor comprising a ternary surface monolayer on a gold interdigitated electrode array. ACS Sensors. 2017;2(2):210–7.PubMedGoogle Scholar
  41. 41.
    Riedel M, Kartchemnik J, Schoning MJ, Lisdat F. Impedimetric DNA detection-steps forward to sensorial application. Anal Chem. 2014;86(15):7867–74.PubMedGoogle Scholar
  42. 42.
    Shamsi MH, Kraatz HB. Probing nucleobase mismatch variations by electrochemical techniques: exploring the effects of position and nature of the single-nucleotide mismatch. Analyst. 2010;135(9):2280–5.PubMedGoogle Scholar
  43. 43.
    Alam MN, Shamsi MH, Kraatz HB. Scanning positional variations in single-nucleotide polymorphism of DNA: an electrochemical study. Analyst. 2012;137(18):4220–5.PubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Motahareh Taki
    • 1
  • Kushal J. Rohilla
    • 2
  • Maria Barton
    • 2
  • Madison Funneman
    • 1
  • Najiyah Benzabeh
    • 1
  • Swati Naphade
    • 3
  • Lisa M. Ellerby
    • 3
  • Keith T. Gagnon
    • 1
    • 2
  • Mohtashim H. Shamsi
    • 1
    Email author
  1. 1.Department of Chemistry & BiochemistrySouthern Illinois UniversityCarbondaleUSA
  2. 2.Biochemistry and Molecular BiologySouthern Illinois University School of MedicineCarbondaleUSA
  3. 3.The Buck Institute for Research on AgingNovatoUSA

Personalised recommendations