Analytical and Bioanalytical Chemistry

, Volume 411, Issue 26, pp 6813–6823 | Cite as

Self-heating tilted fiber Bragg grating device for melt curve analysis of solid-phase DNA hybridization and thermal cycling

  • Jason Koppert
  • Hubert Jean-Ruel
  • Devin O’Neill
  • Chris Harder
  • William Willmore
  • Anatoli Ianoul
  • Jacques AlbertEmail author
Paper in Forefront


We demonstrate a DNA-based optical fiber device that uses an in-fiber grating, a light absorbing coating with surface anchored DNA, and a built-in optical thermometer. This device is used for precisely thermal cycling surface DNA spots bound by a simple UV cross-linking technique. Near-infrared light of wavelengths near 1550 nm and guided power near 300 mW is coupled out of the fiber core by a tilted fiber Bragg grating inscribed in the fiber and absorbed by the coating to increase its temperature to more than 95 °C. A co-propagating broadband light signal (also in the near-infrared region) is used to measure the reflection spectrum of the grating and thus the temperature from the wavelength shifts of the reflection peaks. The device is capable of sensitive DNA melt analysis and can be used for DNA amplification.

Graphical abstract


DNA Fiber grating PCR Fiber sensor 



This work was funded by grants from the Natural Sciences and Engineering Research Council of Canada and Spartan Biosciences Inc. Gratings were fabricated in the Advanced Photonics Laboratory of Carleton University by Albane Laronche.

Compliance with ethical standards

This research does not involve any human participants or animals.

Conflict of interest

The authors declare that they have no competing interests.

Supplementary material

216_2019_2072_MOESM1_ESM.pdf (798 kb)
ESM 1 (PDF 798 kb)


  1. 1.
    Wang X, Wolfbeis OS. Fiber-optic chemical sensors and biosensors (2013–2015). Anal Chem. 2016;88(1):203–27.CrossRefGoogle Scholar
  2. 2.
    Daems D, Knez K, Delport F, Spasic D, Lammertyn J. Real-time PCR melting analysis with fiber optic SPR enables multiplex DNA identification of bacteria. Analyst. 2016;141(6):1906–11.CrossRefGoogle Scholar
  3. 3.
    Nguyen L, Giannetti S, Warren-Smith S, Cooper A, Selleri S, Cucinotta A, et al. Genotyping single nucleotide polymorphisms using different molecular beacon multiplexed within a suspended core optical fiber. Sensors. 2014;14(8):14488–99.CrossRefGoogle Scholar
  4. 4.
    Sun D, Guo T, Ran Y, Huang Y, Guan B-O. In-situ DNA hybridization detection with a reflective microfiber grating biosensor. Biosens Bioelectron. 2014;61:541–6.CrossRefGoogle Scholar
  5. 5.
    Bertucci A, Manicardi A, Candiani A, Giannetti S, Cucinotta A, Spoto G, et al. Detection of unamplified genomic DNA by a PNA-based microstructured optical fiber (MOF) Bragg-grating optofluidic system. Biosens Bioelectron. 2015;63:248–54.CrossRefGoogle Scholar
  6. 6.
    Wang X, Dong X, Zhou Y, Ni K, Cheng J, Chen Z. Hot-wire anemometer based on silver-coated fiber Bragg grating assisted by no-core fiber. IEEE Photon Technol Lett. 2013;25(24):2458–61.CrossRefGoogle Scholar
  7. 7.
    Cashdollar LJ, Chen KP. Fiber Bragg grating flow sensors powered by in-fiber light. IEEE Sens J. 2005;5(6):1327–31.CrossRefGoogle Scholar
  8. 8.
    Wang X, Dong X, Zhou Y, Li Y, Cheng J, Chen Z. Optical fiber anemometer using silver-coated fiber Bragg grating and bitaper. Sens Actuators A. 2014;214:230–3.CrossRefGoogle Scholar
  9. 9.
    Caldas P, Jorge PAS, Rego G, Frazão O, Santos JL, Ferreira LA, et al. Fiber optic hot-wire flowmeter based on a metallic coated hybrid long period grating/fiber Bragg grating structure. Appl Opt. 2011;50(17):2738.CrossRefGoogle Scholar
  10. 10.
    Dong X, Zhou Y, Zhou W, Cheng J, Su Z. Compact anemometer using silver-coated fiber Bragg grating. IEEE Photon J. 2012;4(5):1381–6.CrossRefGoogle Scholar
  11. 11.
    Kashayap R. Fiber Bragg gratings. Academic Press; 2010.Google Scholar
  12. 12.
    Albert J, Shao L-Y, Caucheteur C. Tilted fiber Bragg grating sensors. Laser Photon Rev. 2013;7(1):83–108.CrossRefGoogle Scholar
  13. 13.
    Carver GE, Koch TR, Salvemini D, Feder KS, Westbrook PS. A fiber-grating-based distributed light source. Photon Sens Technol. 2006;6371:63710H.CrossRefGoogle Scholar
  14. 14.
    Hoffmann J, Hin S, Von SF, Zengerle R, Roth G. Universal protocol for grafting PCR primers onto various lab-on-a-chip substrates for solid-phase PCR. RSC Adv. 2012;2(9):3885.CrossRefGoogle Scholar
  15. 15.
    Adessi C. Solid phase DNA amplification: characterisation of primer attachment and amplification mechanisms. Nucleic Acids Res. 2000;28(20):e87e.CrossRefGoogle Scholar
  16. 16.
    Gudnason H, Dufva M, Duong Bang D, Wolff A. An inexpensive and simple method for thermally stable immobilization of DNA on an unmodified glass surface: UV linking of poly(T)10-poly(C)10-tagged DNA probes. Biotechniques. 2008;45(3):261–71.CrossRefGoogle Scholar
  17. 17.
    Wang Z, Zong S, Yang J, Li J, Cui Y. Dual-mode probe based on mesoporous silica coated gold nanorods for targeting cancer cells. Biosens Bioelectron. 2011;26(6):2883–9.CrossRefGoogle Scholar
  18. 18.
    Mega JL, Close SL, Wiviott SD, Shen L, Walker JR, Simon T, et al. Genetic variants in ABCB1 and CYP2C19 and cardiovascular outcomes after treatment with clopidogrel and prasugrel in the TRITON-TIMI 38 trial: a pharmacogenetic analysis. Lancet. 2010;376(9749):1312–9.CrossRefGoogle Scholar
  19. 19.
    Alqarni SA, Albert J, Smelser CW. Fiber-grating-based hyperthermal therapeutic device for mm-sized ex vivo Lethal Volume. In: Advanced photonics 2018 (BGPP, IPR, NP, NOMA, sensors, networks, SPPCom, SOF). Washington: Optical Society of America; 2018. p. SeM2E.4.Google Scholar
  20. 20.
    Pollet J, Janssen KPF, Knez K, Lammertyn J. Real-time monitoring of solid-phase PCR using fiber-optic SPR. Small. 2011;7(8):1003–6.CrossRefGoogle Scholar
  21. 21.
    Gao S, Zhang AP, Tam H-Y, Cho LH, Lu C. All-optical fiber anemometer based on laser heated fiber Bragg gratings. Opt Express. 2011;19(11):10124–30.CrossRefGoogle Scholar
  22. 22.
    Ge D, Wang X, Williams K, Levicky R. Thermostable DNA immobilization and temperature effects on surface hybridization. Langmuir. 2012;28(22):8446–55.CrossRefGoogle Scholar
  23. 23.
    Gudnason H, Dufva M, Bang DD, Wolff A. Comparison of multiple DNA dyes for real-time PCR: effects of dye concentration and sequence composition on DNA amplification and melting temperature. Nucleic Acids Res. 2007;35(19):e127.CrossRefGoogle Scholar
  24. 24.
    Eischeid AC. SYTO dyes and EvaGreen outperform SYBR Green in real-time PCR. BMC Res Notes. 2011;4(1):263.CrossRefGoogle Scholar
  25. 25.
    Delport F, Pollet J, Janssen K, Verbruggen B, Knez K, Spasic D, et al. Real-time monitoring of DNA hybridization and melting processes using a fiber optic sensor. Nanotechnology. 2012;23(6):065503.CrossRefGoogle Scholar
  26. 26.
    Farrar JS, Wittwer CT. Extreme PCR: efficient and specific DNA amplification in 15-60 seconds. Clin Chem. 2015;61(1):145–53.CrossRefGoogle Scholar
  27. 27.
    Montgomery JL, Wittwer CT. Influence of PCR reagents on DNA polymerase extension rates measured on real-time PCR instruments. Clin Chem. 2014;60(2):334–40.CrossRefGoogle Scholar
  28. 28.
    Shin Y, Perera AP, Kim KW, Park MK. Real-time, label-free isothermal solid-phase amplification/detection (ISAD) device for rapid detection of genetic alteration in cancers. Lab Chip. 2013;13(11):2106–14.CrossRefGoogle Scholar
  29. 29.
    Kersting S, Rausch V, Bier FF, von Nickisch-Rosenegk M. Multiplex isothermal solid-phase recombinase polymerase amplification for the specific and fast DNA-based detection of three bacterial pathogens. Mikrochim Acta. 2014;181(13–14):1715–23.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of ElectronicsCarleton UniversityOttawaCanada
  2. 2.Spartan Biosciences Inc.NepeanCanada
  3. 3.Department of ChemistryCarleton UniversityOttawaCanada
  4. 4.Department of BiochemistryCarleton UniversityOttawaCanada

Personalised recommendations