A label-free photoelectrochemical DNA biosensor using a quantum dot–dendrimer nanocomposite

  • Faten DivsarEmail author
Research Paper


A novel label-free photoelectrochemical biosensing method for highly sensitive and specific detection of DNA hybridization using a CdS quantum dot (QD)–dendrimer nanocomposite is presented. A molecular beacon (MB) was assembled on a gold-nanoparticle-modified indium tin oxide electrode surface. Hybridization to a complementary target DNA disrupts the stem–loop structure of the MB, which was afterward labeled with the QD–dendrimer nanocomposite. The modified indium tin oxide electrode showed a stable anodic photocurrent response at 300 mV (vs Ag/AgCl) to light excitation at 410 nm in the presence of 0.1 M ascorbic acid as an electron donor. The protocol developed integrates the specificity of an MB for molecular recognition and the advantages of gold nanoparticles for increasing the loading capacity of the MB on the electrode surface and accelerating the electron transfer. Moreover, the photocurrent was greatly enhanced because of the high loading of QDs by the dendrimer, which eliminated the surface defects of CdS QDs and prevented recombination of their photogenerated electron–hole pairs. Under the optimal conditions, a linear relationship between the increase of photocurrent and target DNA concentration was obtained in the range from 1 fM to 0.1 nM, with a detection limit of 0.5 fM. The sequence-specificity experiment showed that one or three mismatches of DNA bases could be discriminated. This photoelectrochemical method is a prospective technique for DNA hybridization detection because of its great advantages: label-free, high sensitivity and specificity, low cost, and easy fabrication. This could create a new platform for the application of CdS QD–dendrimer nanocomposites in photoelectrochemical bioanalysis.

Graphical abstract


Poly(amidoamine) dendrimer Quantum dots Nanocomposites Photoelectrochemical biosensor 


Compliance with ethical standards

Conflict of interest

The author declare that she has no competing interests.

Supplementary material

216_2019_2058_MOESM1_ESM.pdf (393 kb)
ESM 1 (PDF 393 kb)


  1. 1.
    Lazcka O, Del Campo FJ, Munoz FX. Pathogen detection: a perspective of traditional methods and biosensors. Biosens Bioelectron. 2007;22:1205–17.CrossRefGoogle Scholar
  2. 2.
    Palchetti I, Mascini M. Nucleic acid biosensors for environmental pollution monitoring. Analyst. 2008;133:846–54.CrossRefGoogle Scholar
  3. 3.
    Chang HX, Yuan Y, Shi NL, Guan YF. Electrochemical DNA biosensor based on conducting polyaniline nanotube array. Anal Chem. 2007;79:5111–5.CrossRefGoogle Scholar
  4. 4.
    Gore MR, Szalai VA, Ropp PA, Yang IV, Silverman JS, Thorp HH. Detection of attomole quantities [correction of quantitites] of DNA targets on gold microelectrodes by electrocatalytic nucleobase oxidation. Anal Chem. 2003;75:6586–92.CrossRefGoogle Scholar
  5. 5.
    Divsar F, Ju HX. Electrochemiluminescence detection of near single DNA molecules by using quantum dots–dendrimer nanocomposites for signal amplification. Chem Commun. 2011;47:9879–81.CrossRefGoogle Scholar
  6. 6.
    Kim HY, Kane MD, Kim S, Dominguez W, Applegate BM, Savikhin S. A molecular beacon DNA microarray system for rapid detection of E. coli O157:H7 that eliminates the risk of a false negative signal. Biosens Bioelectron. 2007;22:1041–7.CrossRefGoogle Scholar
  7. 7.
    Wu ZS, Jiang JH, Fu L, Shen GL, Yu RQ. Optical detection of DNA hybridization based on fluorescence quenching of tagged oligonucleotide probes by gold nanoparticles. Anal Biochem. 2006;353:22–9.CrossRefGoogle Scholar
  8. 8.
    Wang HB, Ou LJ, Huang KJ, Wen XG, Wang LL, Liu YM. A sensitive biosensing strategy for DNA detection based on graphene oxide and T7 exonuclease assisted target recycling amplification. Can J Chem. 2013;91:1266–71.CrossRefGoogle Scholar
  9. 9.
    Elghanian R, Storhoff JJ, Mucic RC, Letsinger RL, Mirkin CA. Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles. Science. 1997;277:1078–81.CrossRefGoogle Scholar
  10. 10.
    Storhoff JJ, Elghanian R, Mucic RC, Mirkin CA, Letsinger RL. One-pot colorimetric differentiation of polynucleotides with single base imperfections using gold nanoparticle probes. J Am Chem Soc. 1998;120:1959–64.CrossRefGoogle Scholar
  11. 11.
    Ananthanawat C, Vilaivan T, Mekboonsonglarp W, Hoven VP. Thiolated pyrrolidinyl peptide nucleic acids for the detection of DNA hybridization using surface plasmon resonance. Biosens Bioelectron. 2009;24:3544–9.CrossRefGoogle Scholar
  12. 12.
    Liu S, Li C, Cheng J, Zhou Y. Selective photoelectrochemical detection of DNA with high-affinity metallointercalator and tin oxide nanoparticle electrode. Anal Chem. 2006;78:4722–6.CrossRefGoogle Scholar
  13. 13.
    Wang GL, Yu PP, Xu JJ, Chen HY. A label-free photoelectrochemical immunosensor based on water-soluble Cds quantum dots. J Phys Chem C. 2009;113:11142–8.CrossRefGoogle Scholar
  14. 14.
    Ikeda A, Nakasu M, Ogasawara S, Nakanishi H, Nakamura M, Kikuchi JI. Photoelectrochemical sensor with porphyrin-deposited electrodes for determination of nucleotides in water. Org Lett. 2009;11:1163–6.CrossRefGoogle Scholar
  15. 15.
    Lu W, Wang G, Jin Y, Yao X, Hu JQ, Li JH. Label-free photoelectrochemical strategy for hairpin DNA hybridization detection on titanium dioxide electrode. Appl Phys Lett. 2006;89:263902.CrossRefGoogle Scholar
  16. 16.
    Lu W, Jin Y, Wang G, Chen D, Li JH. Enhanced photoelectrochemical method for linear DNA hybridization detection using Au-nanopaticle labeled DNA as probe onto titanium dioxide electrode. Biosens Bioelectron. 2008;23:1534–9.CrossRefGoogle Scholar
  17. 17.
    Tokudome H, Yamada Y, Sonezaki S, Ishikawa H, Bekki M, Kanehira K, et al. Photoelectrochemical deoxyribonucleic acid sensing on a nanostructured TiO2 electrode. Appl Phys Lett. 2005;87:213901.CrossRefGoogle Scholar
  18. 18.
    Willner I, Patolsky F, Wasserman J. Photoelectrochemistry with controlled DNA-cross-linked CdS nanoparticle arrays. Angew Chem. 2001;113:1913–6.CrossRefGoogle Scholar
  19. 19.
    Wang GL, Xu JJ, Chen HY. Progress in the studies of photoelectrochemical sensors. Sci China Ser B. 2009;52:1789–800.CrossRefGoogle Scholar
  20. 20.
    Wang B, Dong YX, Wang YL, Cao JT, Ma SH, Liu YM. Quenching effect of exciton energy transfer from CdS:Mn to Au nanoparticles: a highly efficient photoelectrochemical strategy for microRNA-21 detection. Sensors Actuators B Chem. 2018;254:159–65.CrossRefGoogle Scholar
  21. 21.
    Fan GC, Zhu H, Du D, Zhang J, Zhu JJ, Lin Y. Enhanced photoelectrochemical immunosensing platform based on CdSeTe@CdS:Mn core-shell quantum dots sensitized TiO2 amplified by CuS nanocrystals conjugated signal antibodies. Anal Chem. 2016;88:3392–9.CrossRefGoogle Scholar
  22. 22.
    Dong YX, Cao JT, Wang B, Ma SH, Liu YM. Exciton−plasmon interactions between CdS@g-C3N4 heterojunction and Au@Ag nanoparticles coupled with DNAase-triggered signal amplification: Toward highly sensitive photoelectrochemical bioanalysis of microRNA. ACS Sustain Chem Eng. 2017;5:10840–8.CrossRefGoogle Scholar
  23. 23.
    Dastan D, Panahi SL, Chaure NB. Characterization of titania thin films grown by dip-coating technique. J Mater Sci Mater Electron. 2016;27:12291–6.CrossRefGoogle Scholar
  24. 24.
    Dastan D, Panahi SL, Yengntiwar AP, Banpurkar AG. Morphological and electrical studies of titania powder and films grown by aqueous solution method. Adv Sci Lett. 2016;22:950–3.CrossRefGoogle Scholar
  25. 25.
    Panahi SL, Dastan D, Chaure NB. Characterization of zirconia nanoparticles grown by sol-gel method. Adv Sci Lett. 2016;22:941–4.CrossRefGoogle Scholar
  26. 26.
    Nasr C, Hotchandani S, Kim WY, Schmehl RH, Kamat PV. Photoelectrochemistry of composite semiconductor thin films. Photosensitization of SnO2/CdS coupled nanocrystallites with a ruthenium polypyridyl complex. J Phys Chem B. 1997;101:7480–7.CrossRefGoogle Scholar
  27. 27.
    Shen Q, Ayuzawa Y, Katayama K, Sawada T, Toyoda T. Separation of ultrafast photoexcited electron and hole dynamics in CdSe quantum dots adsorbed onto nanostructured TiO2 films. Appl Phys Lett. 2010;97:263113.CrossRefGoogle Scholar
  28. 28.
    Zhao WW, Yu PP, Xu JJ, Chen HY. Ultrasensitive photoelectrochemical biosensing based on biocatalytic deposition. Electrochem Commun. 2011;13:495–7.CrossRefGoogle Scholar
  29. 29.
    Sheeney-Haj-Ichia L, Pogorelova S, Gofer Y, Willner I. Enhanced photoelectrochemistry in CdS/Au nanoparticle bilayers. Adv Funct Mater. 2004;14:416–24.CrossRefGoogle Scholar
  30. 30.
    Sheeney-Haj-Ichia L, Basnar B, Willner I. Efficient generation of photocurrents by using CdS/carbon nanotube assemblies on electrodes. Angew Chem Int Ed. 2005;44:78–83.CrossRefGoogle Scholar
  31. 31.
    Zhang X, Li S, Jin X, Zhang S. A new photoelectrochemical aptasensor for the detection of thrombin based on functionalized graphene and CdSe nanoparticles multilayers. Chem Commun. 2011;47:4929–31.CrossRefGoogle Scholar
  32. 32.
    Kongkanand A, Domínguez RM, Kamat PV. Single wall carbon nanotube scaffolds for photoelectrochemical solar cells. Capture and transport of photogenerated electrons. Nano Lett. 2007;7:676–80.CrossRefGoogle Scholar
  33. 33.
    Gill R, Zayats M, Willner I. Semiconductor quantum dots for bioanalysis. Angew Chem Int Ed. 2008;47:7602–25.CrossRefGoogle Scholar
  34. 34.
    Tu WW, Dong Y, Lei JP, Ju HX. Low-potential photoelectrochemical biosensing using porphyrin-functionalized TiO2 nanoparticles. Anal Chem. 2010;82:8711–6.CrossRefGoogle Scholar
  35. 35.
    Dastan D, Chaure N, Kartha M. Surfactants assisted solvothermal derived titania nanoparticles: synthesis and simulation. J Mater Sci Mater Electron. 2017;28:7784–96.CrossRefGoogle Scholar
  36. 36.
    Dastan D. Effect of preparation methods on the properties of titania nanoparticles: solvothermal versus sol-gel. Appl Phys A Mater Sci Process. 2017;123:1–13.CrossRefGoogle Scholar
  37. 37.
    Dastan D, Banpurkar A. Solution processable sol-gel derived titania gate dielectric for organic field effect transistors. J Mater Sci Mater Electron. 2016;28:3851–9.CrossRefGoogle Scholar
  38. 38.
    Qian Z, Bai HJ, Wang GL, Xu JJ, Chen HY. A photoelectrochemical sensor based on CdS-polyamidoamine nanocomposite film for cell capture and detection. Biosens Bioelectron. 2010;25:2045–50.CrossRefGoogle Scholar
  39. 39.
    Grabar KC, Freeman RG, Hommer MB, Natan MJ. Preparation and characterization of Au colloid monolayers. Anal Chem. 1995;67:735–43.CrossRefGoogle Scholar
  40. 40.
    Priyam A, Chatterjee A, Das SK, Saha A. Synthesis and spectral studies of cysteine-capped CdS nanoparticles. Res Chem Intermed. 2005;31:691–702.CrossRefGoogle Scholar
  41. 41.
    Jin YJ, Luo YJ, Li GP, Li J, Wang YF, Yang RQ, et al. Application of photoluminescent CdS/PAMAM nanocomposites in fingerprint detection. Forensic Sci Int. 2008;179:34–8.CrossRefGoogle Scholar
  42. 42.
    Murray CB, Norris DJ, Bawendi MG. Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites. J Am Chem Soc. 1993;115:8706–15.CrossRefGoogle Scholar
  43. 43.
    Yu WW, Qu LH, Guo WZ, Peng XG. Experimental determination of the extinction coefficient of CdTe, CdSe, and CdS nanocrystals. Chem Mater. 2003;15:2854–60.CrossRefGoogle Scholar
  44. 44.
    Zhang CX, O’Brien S, Balogh L. Comparison and stability of CdSe nanocrystals covered with amphiphilic poly(amidoamine) dendrimers. J Phys Chem B. 2002;106:10316–21.CrossRefGoogle Scholar
  45. 45.
    Qingwen L, Guoan L, Jun F, Dawen C, Qi O. Photoelectrochemistry as a novel strategy for DNA hybridization detection. Analyst. 2000;125:1908–10.CrossRefGoogle Scholar
  46. 46.
    Street RA, Qi P, Lujan R, Wong WS. Reflectivity of disordered silicon nanowires. Appl Phys Lett. 2008;93:163109.CrossRefGoogle Scholar
  47. 47.
    Gao Z, Tansil NC. An ultrasensitive photoelectrochemical nucleic acid biosensor. Nucleic Acids Res. 2005;33:e123.CrossRefGoogle Scholar
  48. 48.
    Zhang X, Zhao Y, Zhou H, Qu B. A new strategy for photoelectrochemical DNA biosensor using chemiluminescence reaction as light source. Biosens Bioelectron. 2011;26:2737–41.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of ChemistryPayame Noor UniversityTehranIran

Personalised recommendations