Advertisement

Accurate mass and retention time library of serum lipids for type 1 diabetes research

Abstract

Dysregulated lipid species are linked to various disease pathologies and implicated as potential biomarkers for type 1 diabetes (T1D). However, it is challenging to comprehensively profile the blood specimen lipidome with full structural details of every lipid molecule. The commonly used reversed-phase liquid chromatography-tandem mass spectrometry (RPLC-MS/MS)-based lipidomics approach is powerful for the separation of individual lipid species, but lipids belonging to different classes may still co-elute and result in ion suppression and misidentification of lipids. Using offline mixed-mode and RPLC-based two-dimensional separations coupled with MS/MS, a comprehensive lipidomic profiling was performed on human sera pooled from healthy and T1D subjects. The elution order of lipid molecular species on RPLC showed good correlations to the total number of carbons in fatty acyl chains and total number of double bonds. This observation together with fatty acyl methyl ester analysis was used to enhance the confidence of identified lipid species. The final T1D serum lipid library database contains 753 lipid molecular species with accurate mass and RPLC retention time uniquely annotated for each of the species. This comprehensive human serum lipid library can serve as a database for high-throughput RPLC-MS-based lipidomic analysis of blood samples related to T1D and other childhood diseases.

Graphical abstract

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 157

This is the net price. Taxes to be calculated in checkout.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. 1.

    Wymann MP, Schneiter R. Lipid signalling in disease. Nat Rev Mol Cell Biol. 2008;9(2):162–76.

  2. 2.

    Nguyen A, Rudge SA, Zhang Q, Wakelam MJO. Using lipidomics analysis to determine signalling and metabolic changes in cells. Curr Opin Biotechnol. 2017;43:96–103.

  3. 3.

    Li X, Xu Z, Lu X, Yang X, Yin P, Kong H, et al. Comprehensive two-dimensional gas chromatography/time-of-flight mass spectrometry for metabonomics: biomarker discovery for diabetes mellitus. Anal Chim Acta. 2009;633(2):257–62.

  4. 4.

    Zarrouk A, Debbabi M, Bezine M, Karym EM, Badreddine A, Rouaud O, et al. Lipid biomarkers in Alzheimer’s disease. Curr Alzheimer Res. 2018;15(4):303–12.

  5. 5.

    Fox TE, Bewley MC, Unrath KA, Pedersen MM, Anderson RE, Jung DY, et al. Circulating sphingolipid biomarkers in models of type 1 diabetes. J Lipid Res. 2011;52(3):509–17.

  6. 6.

    Lamichhane S, Ahonen L, Dyrlund TS, Kemppainen E, Siljander H, Hyoty H, et al. Dynamics of plasma lipidome in progression to islet autoimmunity and type 1 diabetes—Type 1 Diabetes Prediction and Prevention Study (DIPP). Sci Rep. 2018;8(1):10635.

  7. 7.

    Sorensen CM, Ding J, Zhang Q, Alquier T, Zhao R, Mueller PW, et al. Perturbations in the lipid profile of individuals with newly diagnosed type 1 diabetes mellitus: lipidomics analysis of a Diabetes Antibody Standardization Program sample subset. Clin Biochem. 2010;43(12):948–56.

  8. 8.

    Luppa PB, Bietenbeck A, Beaudoin C, Giannetti A. Clinically relevant analytical techniques, organizational concepts for application and future perspectives of point-of-care testing. Biotechnol Adv. 2016;34(3):139–60.

  9. 9.

    Wenk MR. The emerging field of lipidomics. Nat Rev Drug Discov. 2005;4(7):594–610.

  10. 10.

    Holcapek M, Jirasko R, Lisa M. Recent developments in liquid chromatography-mass spectrometry and related techniques. J Chromatogr A. 2012;1259:3–15.

  11. 11.

    Cajka T, Fiehn O. Increasing lipidomic coverage by selecting optimal mobile-phase modifiers in LC–MS of blood plasma. Metabolomics. 2016;12(2).

  12. 12.

    Narvaez-Rivas M, Vu N, Chen GY, Zhang Q. Off-line mixed-mode liquid chromatography coupled with reversed phase high performance liquid chromatography-high resolution mass spectrometry to improve coverage in lipidomics analysis. Anal Chim Acta. 2017;954:140–50.

  13. 13.

    Narvaez-Rivas M, Zhang Q. Comprehensive untargeted lipidomic analysis using core-shell C30 particle column and high field Orbitrap mass spectrometer. J Chromatogr A. 2016;1440:123–34.

  14. 14.

    Gao X, Zhang Q, Meng D, Isaac G, Zhao R, Fillmore TL, et al. A reversed-phase capillary ultra-performance liquid chromatography-mass spectrometry (UPLC-MS) method for comprehensive top-down/bottom-up lipid profiling. Anal Bioanal Chem. 2012;402(9):2923–33.

  15. 15.

    Rampler E, Criscuolo A, Zeller M, El Abiead Y, Schoeny H, Hermann G, et al. A novel lipidomics workflow for improved human plasma identification and quantification using RPLC-MSn methods and isotope dilution strategies. Anal Chem. 2018;90(11):6494–501.

  16. 16.

    Wozny K, Lehmann WD, Wozny M, Akbulut BS, Brugger B. A method for the quantitative determination of glycerophospholipid regioisomers by UPLC-ESI-MS/MS. Anal Bioanal Chem. 2019;411(4):915–24.

  17. 17.

    Kind T, Liu KH, Lee DY, DeFelice B, Meissen JK, Fiehn O. LipidBlast in silico tandem mass spectrometry database for lipid identification. Nat Methods. 2013;10(8):755–8.

  18. 18.

    Taguchi R, Ishikawa M. Precise and global identification of phospholipid molecular species by an Orbitrap mass spectrometer and automated search engine LipidSearch. J Chromatogr A. 2010;1217(25):4229–39.

  19. 19.

    Meng D, Zhang Q, Gao X, Wu S, Lin G. LipidMiner: a software for automated identification and quantification of lipids from multiple liquid chromatography/mass spectrometry data files. Rapid Commun Mass Spectrom. 2014;28(8):981–5.

  20. 20.

    Pluskal T, Castillo S, Villar-Briones A, Oresic M. MZmine 2: modular framework for processing, visualizing, and analyzing mass spectrometry-based molecular profile data. BMC Bioinformatics. 2010;11:395.

  21. 21.

    Conrads TP, Anderson GA, Veenstra TD, Paša-Tolić L, Smith RD. Utility of accurate mass tags for proteome-wide protein identification. Anal Chem. 2000;72(14):3349–54.

  22. 22.

    Zimmer JS, Monroe ME, Qian WJ, Smith RD. Advances in proteomics data analysis and display using an accurate mass and time tag approach. Mass Spectrom Rev. 2006;25(3):450–82.

  23. 23.

    Creek DJ, Jankevics A, Breitling R, Watson DG, Barrett MP, Burgess KE. Toward global metabolomics analysis with hydrophilic interaction liquid chromatography-mass spectrometry: improved metabolite identification by retention time prediction. Anal Chem. 2011;83(22):8703–10.

  24. 24.

    Ding J, Sorensen CM, Jaitly N, Jiang H, Orton DJ, Monroe ME, et al. Application of the accurate mass and time tag approach in studies of the human blood lipidome. J Chromatogr B Anal Technol Biomed Life Sci. 2008;871(2):243–52.

  25. 25.

    Rewers M, Bugawan TL, Norris JM, Blair A, Beaty B, Hoffman M, et al. Newborn screening for HLA markers associated with IDDM: diabetes autoimmunity study in the young (DAISY). Diabetologia. 1996;39(7):807–12.

  26. 26.

    Norris JM, Yin X, Lamb MM, Barriga K, Seifert J, Hoffman M, et al. Omega-3 polyunsaturated fatty acid intake and islet autoimmunity in children at increased risk for type 1 diabetes. JAMA. 2007;298(12):1420–8.

  27. 27.

    Nakanishi H, Iida Y, Shimizu T, Taguchi R. Separation and quantification of sn-1 and sn-2 fatty acid positional isomers in phosphatidylcholine by RPLC-ESIMS/MS. J Biochem. 2010;147(2):245–56.

  28. 28.

    Larsen A, Uran S, Jacobsen PB, Skotland T. Collision-induced dissociation of glycero phospholipids using electrospray ion-trap mass spectrometry. Rapid Commun Mass Spectrom. 2001;15(24):2393–8.

  29. 29.

    Hvattum E, Hagelin G, Larsen A. Study of mechanisms involved in the collision-induced dissociation of carboxylate anions from glycerophospholipids using negative ion electrospray tandem quadrupole mass spectrometry. Rapid Commun Mass Spectrom. 1998;12(19):1405–9.

  30. 30.

    Cui Z, Thomas MJ. Phospholipid profiling by tandem mass spectrometry. J Chromatogr B Anal Technol Biomed Life Sci. 2009;877(26):2709–15.

  31. 31.

    Pi J, Wu X, Feng Y. Fragmentation patterns of five types of phospholipids by ultra-high-performance liquid chromatography electrospray ionization quadrupole time-of-flight tandem mass spectrometry. Anal Methods. 2016;8(6):1319–32.

  32. 32.

    Hsu FF, Turk J. Structural characterization of unsaturated glycerophospholipids by multiple-stage linear ion-trap mass spectrometry with electrospray ionization. J Am Soc Mass Spectrom. 2008;19(11):1681–91.

  33. 33.

    Hsu FF, Turk J. Electrospray ionization multiple-stage linear ion-trap mass spectrometry for structural elucidation of triacylglycerols: assignment of fatty acyl groups on the glycerol backbone and location of double bonds. J Am Soc Mass Spectrom. 2010;21(4):657–69.

  34. 34.

    Hsu FF, Turk J, Thukkani AK, Messner MC, Wildsmith KR, Ford DA. Characterization of alkylacyl, alk-1-enylacyl and lyso subclasses of glycerophosphocholine by tandem quadrupole mass spectrometry with electrospray ionization. J Mass Spectrom. 2003;38(7):752–63.

  35. 35.

    Han X, Yang K, Gross RW. Multi-dimensional mass spectrometry-based shotgun lipidomics and novel strategies for lipidomic analyses. Mass Spectrom Rev. 2012;31(1):134–78.

  36. 36.

    Holčapek M, Liebisch G, Ekroos K. Lipidomic analysis. Anal Chem. 2018;90(7):4249–57.

  37. 37.

    Liebisch G, Vizcaino JA, Kofeler H, Trotzmuller M, Griffiths WJ, Schmitz G, et al. Shorthand notation for lipid structures derived from mass spectrometry. J Lipid Res. 2013;54(6):1523–30.

  38. 38.

    Ovcacikova M, Lisa M, Cifkova E, Holcapek M. Retention behavior of lipids in reversed-phase ultrahigh-performance liquid chromatography-electrospray ionization mass spectrometry. J Chromatogr A. 2016;1450:76–85.

  39. 39.

    Nakagawa Y, Horrocks LA. Separation of alkenylacyl, alkylacyl, and diacyl analogues and their molecular species by high performance liquid chromatography. J Lipid Res. 1983;24(9):1268–75.

  40. 40.

    Merrill AH Jr, Sullards MC, Allegood JC, Kelly S, Wang E. Sphingolipidomics: high-throughput, structure-specific, and quantitative analysis of sphingolipids by liquid chromatography tandem mass spectrometry. Methods. 2005;36(2):207–24.

  41. 41.

    Smith PB, Snyder AP, Harden CS. Characterization of bacterial phospholipids by electrospray ionization tandem mass spectrometry. Anal Chem. 1995;67(11):1824–30.

  42. 42.

    Han X, Gross RW. Structural determination of picomole amounts of phospholipids via electrospray ionization tandem mass spectrometry. J Am Soc Mass Spectrom. 1995;6(12):1202–10.

  43. 43.

    Bird SS, Marur VR, Sniatynski MJ, Greenberg HK, Kristal BS. Serum lipidomics profiling using LC-MS and high-energy collisional dissociation fragmentation: focus on triglyceride detection and characterization. Anal Chem. 2011;83(17):6648–57.

  44. 44.

    Quehenberger O, Dennis EA. The human plasma lipidome. N Engl J Med. 2011;365(19):1812–23.

  45. 45.

    Quehenberger O, Armando AM, Brown AH, Milne SB, Myers DS, Merrill AH, et al. Lipidomics reveals a remarkable diversity of lipids in human plasma. J Lipid Res. 2010;51(11):3299–305.

  46. 46.

    Zhou X, Mao J, Ai J, Deng Y, Roth MR, Pound C, et al. Identification of plasma lipid biomarkers for prostate cancer by lipidomics and bioinformatics. PLoS One. 2012;7(11):e48889.

  47. 47.

    Sandra K, Pereira Ados S, Vanhoenacker G, David F, Sandra P. Comprehensive blood plasma lipidomics by liquid chromatography/quadrupole time-of-flight mass spectrometry. J Chromatogr A. 2010;1217(25):4087–99.

  48. 48.

    Liebisch G, Binder M, Schifferer R, Langmann T, Schulz B, Schmitz G. High throughput quantification of cholesterol and cholesteryl ester by electrospray ionization tandem mass spectrometry (ESI-MS/MS). Biochim Biophys Acta. 2006;1761(1):121–8.

  49. 49.

    Murphy RC, Axelsen PH. Mass spectrometric analysis of long-chain lipids. Mass Spectrom Rev. 2011;30(4):579–99.

Download references

Author information

Correspondence to Qibin Zhang.

Ethics declarations

This research analyzed de-identified human serum samples collected from clinical studies and has IRB approval as stated in the “Materials and methods” section. All authors have read and agreed to the final version of this manuscript.

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 188 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Vu, N., Narvaez-Rivas, M., Chen, G. et al. Accurate mass and retention time library of serum lipids for type 1 diabetes research. Anal Bioanal Chem 411, 5937–5949 (2019). https://doi.org/10.1007/s00216-019-01997-7

Download citation

Keywords

  • Human serum lipidome
  • Type 1 diabetes
  • Lipid profiling
  • Mixed-mode LC
  • RPLC-MS/MS
  • Accurate mass and time tag