Analytical and Bioanalytical Chemistry

, Volume 411, Issue 29, pp 7689–7697 | Cite as

Maleic anhydride and acetylene plasma copolymer surfaces for SPR immunosensing

  • Ekaterina Makhneva
  • Zdeněk FarkaEmail author
  • Matěj Pastucha
  • Adam Obrusník
  • Veronika Horáčková
  • Petr Skládal
  • Lenka Zajíčková
Research Paper
Part of the following topical collections:
  1. New Developments in Biosensors


We report on the successful application of carboxyl-rich plasma polymerized (PP) films as a matrix layer for bioreceptor immobilization in surface plasmon resonance (SPR) immunosensing. Composition and chemical properties of the carboxyl-rich PP films deposited from a mixture of maleic anhydride and acetylene were investigated. Changes in the films stored in air, water, and buffer were studied and the involved chemical changes were described. Performance in SPR immunosensing was evaluated on interactions of human serum albumin (HSA) with a specific monoclonal antibody. The comparison with the mixed self-assembled monolayer of mercaptoundecanoic acid and mercaptohexanol (MUA/MCH) and one of the most widely used surfaces for SPR, the 2D and 3D carboxymethylated dextran (CMD), was presented to show the efficacy of plasma polymerized matrix layers for biosensing. The PP film-based SPR immunosensor provided a similar detection limit of HSA (100 ng/mL) as MUA/MCH- (100 ng/mL) and 3D CMD (50 ng/mL)-based sensors. However, the response levels were about twice higher in case of the PP film-based immunosensor than in case of MUA/MCH-based alternative. The PP film surfaces had similar binding capacity towards antibody as the 3D CMD layers. The response of PP film-based sensor towards HSA was comparable to 3D CMD-based sensor up to 2.5 μg/mL. For the higher concentrations (> 10 μg/mL), the response of PP film-based immunosensor was lower due to inaccessibility of active sites of the immobilized antibody inside the flat PP film surface. We have demonstrated that due to its high stability and cost-effective straightforward preparation, the carboxyl-rich PP films represent an efficient alternative to self-assembled monolayers (SAM) and dextran-based layers in label-free immunosensing.

Graphical abstract


Plasma polymerization Carboxyl-rich films Immobilization Surface plasmon resonance biosensor Label-free detection 


Funding information

This research has been financially supported by the Ministry of Education, Youth and Sports of the Czech Republic under the project CEITEC 2020 (LQ1601). CIISB research infrastructure project LM2015043, funded by Ministry of Education, Youth and Sports of the Czech Republic, is gratefully acknowledged for financial support of the measurements at CF Nanobiotechnology.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

216_2019_1979_MOESM1_ESM.pdf (838 kb)
ESM 1 (PDF 837 kb)


  1. 1.
    Skládal P. Piezoelectric biosensors. Trends Anal Chem. 2016;79:127–33.CrossRefGoogle Scholar
  2. 2.
    Caucheteur C, Guo T, Albert J. Review of plasmonic fiber optic biochemical sensors: improving the limit of detection. Anal Bioanal Chem. 2015;407(14):3883–97.CrossRefGoogle Scholar
  3. 3.
    Farka Z, Juřík T, Kovář D, Trnková L, Skládal P. Nanoparticle-based immunochemical biosensors and assays: recent advances and challenges. Chem Rev. 2017;117(15):9973–10042.CrossRefGoogle Scholar
  4. 4.
    Wadu-Mesthrige K, Amro NA, Liu GY. Immobilization of proteins on self-assembled monolayers. Scanning. 2000;22(6):380–8.CrossRefGoogle Scholar
  5. 5.
    Howell S, Kenmore M, Kirkland M, Badley RA. High-density immobilization of an antibody fragment to a carboxymethylated dextran-linked biosensor surface. J Mol Recognit. 1998;11(1–6):200–3.CrossRefGoogle Scholar
  6. 6.
    Jadhav SA. Self-assembled monolayers (SAMs) of carboxylic acids: an overview. Cent Eur J Chem. 2011;9(3):369–78.CrossRefGoogle Scholar
  7. 7.
    Jung D, Yeo S, Kim J, Kim B, Jin B, Ryu DY. Formation of amine groups by plasma enhanced chemical vapor deposition and its application to DNA array technology. Surf Coat Technol. 2006;200(9):2886–91.CrossRefGoogle Scholar
  8. 8.
    Crespin M, Moreau N, Masereel B, Feron O, Gallez B, Vander Borght T, et al. Surface properties and cell adhesion onto allylamine-plasma and amine-plasma coated glass coverslips. J Mater Sci Mater Med. 2011;22(3):671–82.CrossRefGoogle Scholar
  9. 9.
    Chen Q, Forch R, Knoll W. Characterization of pulsed plasma polymerization allylamine as an adhesion layer for DNA adsorption/hybridization. Chem Mater. 2004;16(4):614–20.CrossRefGoogle Scholar
  10. 10.
    Wu ZY, Yan YH, Shen GL, Yu RQ. A novel approach of antibody immobilization based on n-butyl amine plasma-polymerized films for immunosensors. Anal Chim Acta. 2000;412(1–2):29–35.CrossRefGoogle Scholar
  11. 11.
    Makhneva E, Farka Z, Skládal P, Zajíčková L. Cyclopropylamine plasma polymer surfaces for label-free SPR and QCM immunosensing of Salmonella. Sensors Actuators B Chem. 2018;276:447–55.CrossRefGoogle Scholar
  12. 12.
    Yang ZL, Wang J, Luo RF, Maitz MF, Jing FJ, Sun H, et al. The covalent immobilization of heparin to pulsed-plasma polymeric allylamine films on 316L stainless steel and the resulting effects on hemocompatibility. Biomaterials. 2010;31(8):2072–83.CrossRefGoogle Scholar
  13. 13.
    Hu WJ, Xie FY, Chen Q, Weng J. Amine-containing film deposited in pulsed dielectric barrier discharge at a high pressure and its cell adsorption behaviours. Chin Phys B. 2009;18(3):1276–82.CrossRefGoogle Scholar
  14. 14.
    Ren TB, Weigel T, Groth T, Lendlein A. Microwave plasma surface modification of silicone elastomer with allylamine for improvement of biocompatibility. J Biomed Mater Res A. 2008;86A(1):209–19.CrossRefGoogle Scholar
  15. 15.
    Makhneva E, Manakhov A, Skládal P, Zajíčková L. Development of effective QCM biosensors by cyclopropylamine plasma polymerization and antibody immobilization using cross-linking reactions. Surf Coat Technol. 2016;290:116–23.CrossRefGoogle Scholar
  16. 16.
    Batan A, Nisol B, Kakaroglou A, De Graeve I, Van Assche G, Van Mele B, et al. The impact of double bonds in the APPECVD of acrylate-like precursors. Plasma Process Polym. 2013;10(10):857–63.Google Scholar
  17. 17.
    Nisol B, Watson S, Lerouge S, Wertheimer MR. Energetics of reactions in a dielectric barrier discharge with argon carrier gas: III esters. Plasma Process Polym. 2016;13(9):900–7.CrossRefGoogle Scholar
  18. 18.
    Korner E, Fortunato G, Hegemann D. Influence of RF plasma reactor setup on carboxylated hydrocarbon coatings. Plasma Process Polym. 2009;6(2):119–25.CrossRefGoogle Scholar
  19. 19.
    Rupper P, Vandenbossche M, Bernard L, Hegemann D, Heuberger M. Composition and stability of plasma polymer films exhibiting vertical chemical gradients. Langmuir. 2017;33(9):2340–52.CrossRefGoogle Scholar
  20. 20.
    Mishra G, McArthur SL. Plasma polymerization of maleic anhydride: just what are the right deposition conditions? Langmuir. 2010;26(12):9645–58.CrossRefGoogle Scholar
  21. 21.
    Chu LQ, Zhang Q, Forch R. Surface plasmon-based techniques for the analysis of plasma deposited functional films and surfaces. Plasma Process Polym. 2015;12(9):941–52.CrossRefGoogle Scholar
  22. 22.
    Pearson HA, Urban MW. Simple click reactions on polymer surfaces leading to antimicrobial behavior. J Mater Chem B. 2014;2(15):2084–7.CrossRefGoogle Scholar
  23. 23.
    Rich RL, Myszka DG. Advances in surface plasmon resonance biosensor analysis. Curr Opin Biotechnol. 2000;11(1):54–61.CrossRefGoogle Scholar
  24. 24.
    Johnsson B, Lofas S, Lindquist G. Immobilization of proteins to a carboxymethyldextran-modified gold surface for biospecific interaction analysis in surface-plasmon resonance sensors. Anal Biochem. 1991;198(2):268–77.CrossRefGoogle Scholar
  25. 25.
    Makhneva E, Obrusník A, Farka Z, Skládal P, Vandenbossche M, Hegemann D, et al. Carboxyl-rich plasma polymer surfaces in surface plasmon resonance immunosensing. Jpn J Appl Phys. 2018;57(1):5.Google Scholar
  26. 26.
    Obrusník A, Jelínek P, Zajíčková L. Modelling of the gas flow and plasma co-polymerization of two monomers in an atmospheric-pressure dielectric barrier discharge. Surf Coat Technol. 2017;314:139–47.CrossRefGoogle Scholar
  27. 27.
    Coates J. Interpretation of infrared spectra, a practical approach. Encyclopedia of analytical chemistry. 2006.Google Scholar
  28. 28.
    Nisol B, Watson S, Lerouge S, Wertheimer MR. Energetics of reactions in a dielectric barrier discharge with argon carrier gas: V hydrocarbons. Plasma Process Polym. 2017;14(8):9.CrossRefGoogle Scholar
  29. 29.
    Zajíčková L, Jelínek P, Obrusník A, Vodák J, Nečas D. Plasma-enhanced CVD of functional coatings in Ar/maleic anhydride/C2H2 homogeneous dielectric barrier discharges at atmospheric pressure. Plasma Phys Control Fusion. 2017;59(3):13.CrossRefGoogle Scholar
  30. 30.
    Navrátilová I, Skládal P, Viklický V. Development of piezoelectric immunosensors for measurement of albuminuria. Talanta. 2001;55(4):831–9.CrossRefGoogle Scholar
  31. 31.
    Farka Z, Čunderlová V, Horáčková V, Pastucha M, Mikušová Z, Hlaváček A, et al. Prussian blue nanoparticles as a catalytic label in a sandwich nanozyme-linked immunosorbent assay. Anal Chem. 2018;90(3):2348–54.CrossRefGoogle Scholar
  32. 32.
    Farré M, Kantiani L, Barceló D. Microfluidic devices: biosensors. Chemical analysis of food: techniques and applications; 2012. p. 177–217.CrossRefGoogle Scholar
  33. 33.
    Farka Z, Kovář D, Přibyl J, Skládal P. Piezoelectric and surface plasmon resonance biosensors for Bacillus atrophaeus spores. Int J Electrochem Sci. 2013;8(1):100–12.Google Scholar
  34. 34.
    Lofas S, Johnsson B. A novel hydrogel matrix on gold surfaces in surface-plasmon resonance sensors for fast and efficient covalent immobilization of ligands. J Chem Soc Chem Commun. 1990;(21):1526–8.Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.RG Plasma Technologies, CEITEC MUMasaryk UniversityBrnoCzech Republic
  2. 2.Department of Physical Electronics, Faculty of ScienceMasaryk UniversityBrnoCzech Republic
  3. 3.RG Nanobiotechnology, CEITEC MUMasaryk UniversityBrnoCzech Republic
  4. 4.Department of Biochemistry, Faculty of ScienceMasaryk UniversityBrnoCzech Republic

Personalised recommendations