Analytical and Bioanalytical Chemistry

, Volume 411, Issue 21, pp 5563–5576 | Cite as

Development of uncoated near-spherical gold nanoparticles for the label-free quantification of Lactobacillus rhamnosus GG by surface-enhanced Raman spectroscopy

  • Elie AkannyEmail author
  • Anne Bonhommé
  • Carine Commun
  • Anne Doleans-Jordheim
  • François Bessueille
  • Sandrine Bourgeois
  • Claire Bordes
Research Paper


The Surface-enhanced Raman spectroscopy (SERS) method based on gold nanoparticles as SERS substrate was investigated for the label-free detection and quantification of probiotic bacteria that are widely used in various pharmaceutical formulations. Indeed, the development of a simple and fast SERS method dedicated to the quantification of bacteria should be very useful for the characterization of such formulations in a more convenient way than the usually performed tedious and time-consuming conventional counting method. For this purpose, uncoated near-spherical gold nanoparticles were developed at room temperature by acidic treatment of star-like gold nanoparticle precursors. In this study, we first investigated the influence of acidic treatment conditions on both the nanoparticle physicochemical properties and SERS efficiency using Rhodamine 6G (R6G) as “model” analyte. Results highlighted that an effective R6G Raman signal enhancement was obtained by promoting chemical effect through R6G-anion interactions and by obtaining a suitable aggregation state of the nanoparticles. Depending on the nanoparticle synthesis conditions, R6G SERS signals were up to 102–103-fold greater than those obtained with star-like gold nanoparticles. The synthesized spherical gold nanoparticles were then successfully applied for the detection and quantification of Lactobacillus rhamnosus GG (LGG). In that case, the signal enhancement was especially due to the combination of anion-induced chemical enhancement and nanoparticle aggregation on LGG cell wall consecutive to non-specific interactions. Both the simplicity and speed of the procedure, achieved under 30 min, including nanoparticle synthesis, sample preparation, and acquisition of SERS spectra, appeared as very relevant for the characterization of pharmaceutical formulations incorporating probiotics.

Graphical abstract


Surface-enhanced Raman spectroscopy Lactobacillus rhamnosus Rhodamine 6G Gold nanoparticles 



The authors gratefully acknowledge Carole Farre from the Institute of Analytical Sciences for providing TEM images.

Compliance with ethical standards

Conflict of interest

The authors declare that there is no conflict of interest.

Supplementary material

216_2019_1938_MOESM1_ESM.pdf (326 kb)
ESM 1 (PDF 325 kb)


  1. 1.
    Granger JH, Schlotter NE, Crawford AC, Porter MD. Prospects for point-of-care pathogen diagnostics using surface-enhanced Raman scattering (SERS). Chem Soc Rev. 2016;45:3865–82.CrossRefPubMedGoogle Scholar
  2. 2.
    Zhou H, Yang D, Ivleva NP, Mircescu NE, Niessner R, Haisch C. SERS detection of bacteria in water by in situ coating with Ag nanoparticles. Anal Chem. 2014;861:525–1533.Google Scholar
  3. 3.
    Mamián-López MB, Poppi RJ. Quantification of moxifloxacin in urine using surface-enhanced Raman spectroscopy (SERS) and multivariate curve resolution on a nanostructured gold surface. Anal Bioanal Chem. 2013;405:7671–7.CrossRefPubMedGoogle Scholar
  4. 4.
    Fleischmann M, Hendra PJ, McQuillan AJ. Raman spectra of pyridine adsorbed at a silver electrode. Chem Phys Lett. 1974;26:163–6.CrossRefGoogle Scholar
  5. 5.
    Hong S, Li X. Optimal size of gold nanoparticles for surface-enhanced Raman spectroscopy under different conditions. J Nanomater. 2013;2013:1–9.Google Scholar
  6. 6.
    Stiles PL, Dieringer JA, Shah NC, Van Duyne RP. Surface-enhanced Raman spectroscopy. Annu Rev Anal Chem. 2008;1:601–26.CrossRefGoogle Scholar
  7. 7.
    Schlücker S. Surface-enhanced Raman spectroscopy: concepts and chemical applications. Angew Chem Int Ed. 2014;53:4756–95.CrossRefGoogle Scholar
  8. 8.
    Ankamwar B, Sur UK, Das P. SERS study of bacteria using biosynthesized silver nanoparticles as the SERS substrate. Anal Methods. 2016;8:2335–40.CrossRefGoogle Scholar
  9. 9.
    Yang D, Zhou H, Haisch C, Niessner R, Ying Y. Reproducible E. coli detection based on label-free SERS and mapping. Talanta. 2016;146:457–63.CrossRefPubMedGoogle Scholar
  10. 10.
    Temur E, Boyaci IH, Tamer U, Unsal H, Aydogan N. A highly sensitive detection platform based on surface-enhanced Raman scattering for Escherichia coli enumeration. Anal Bioanal Chem. 2010;397:1595–604.CrossRefPubMedGoogle Scholar
  11. 11.
    Yang L, Yan B, Premasiri WR, Ziegler LD, Negro LD, Reinhard BM. Engineering nanoparticle cluster arrays for bacterial biosensing: the role of the building block in multiscale SERS substrates. Adv Funct Mater. 2010;20:2619–28.CrossRefGoogle Scholar
  12. 12.
    Tamer U, Cetin D, Suludere Z, Boyaci IH, Temiz HT, Yegenoglu H, et al. Gold-coated iron composite nanospheres targeted the detection of Escherichia coli. Int J Mol Sci. 2013;14:6223–40.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Wang J, Wu X, Wang C, Shao N, Dong P, Xiao R, et al. Magnetically assisted surface-enhanced Raman spectroscopy for the detection of Staphylococcus aureus based on aptamer recognition. ACS Appl Mater Interfaces. 2015;7:20919–29.CrossRefPubMedGoogle Scholar
  14. 14.
    Lin CC, Yang YM, Liao PH, Chen DW, Lin HP, Chang HC. A filter-like AuNPs@MS SERS substrate for Staphylococcus aureus detection. Biosens Bioelectron. 2014;53:519–27.CrossRefPubMedGoogle Scholar
  15. 15.
    Drake P, Jiang PS, Chang HW, Su SC, Tanha J, Tay LL, et al. Raman based detection of Staphylococcus aureus utilizing single domain antibody coated nanoparticle labels and magnetic trapping. Anal Methods. 2013;5:4152–8.CrossRefGoogle Scholar
  16. 16.
    Duan N, Chang B, Zhang H, Wang Z, Wu S. Salmonella typhimurium detection using a surface-enhanced Raman scattering-based aptasensor. Int J Food Microbiol. 2016;218:38–43.CrossRefPubMedGoogle Scholar
  17. 17.
    Premasiri VR, Moir DT, Klempner MS, Krieger N, Jones G II, Ziegler LD. Characterization of the surface enhanced Raman scattering (SERS) of bacteria. J Phys Chem B. 2005;109:312–20.CrossRefPubMedGoogle Scholar
  18. 18.
    Butel MJ. Probiotics, gut microbiota and health. Med Mal Infect. 2014;44:1–8.CrossRefPubMedGoogle Scholar
  19. 19.
    Videlock EJ, Cremonini F. Meta-analysis: probiotics in antibiotic-associated diarrhoea. Aliment Pharmacol Ther. 2012;35:1355–69.CrossRefPubMedGoogle Scholar
  20. 20.
    Szajewska H, Kołodziej M. Systematic review with meta-analysis: Lactobacillus rhamnosus GG in the prevention of antibiotic-associated diarrhoea in children and adults. Aliment Pharmacol Ther. 2015;42:1149–57.CrossRefPubMedGoogle Scholar
  21. 21.
    McFarland LV. Meta-analysis of probiotics for the prevention of antibiotic associated diarrhea and the treatment of Clostridium difficile disease. Am J Gastroenterol. 2006;101:812–22.CrossRefPubMedGoogle Scholar
  22. 22.
    Li R, Zhang Y, Polk DB, Tomasula PM, Yan F, Liu LS. Preserving viability of Lactobacillus rhamnosus GG in vitro and in vivo by a new encapsulation system. J Control Release. 2016;230:79–87.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Burgain J, Gaiani C, Cailliez-Grimal C, Jeandel C, Scher J. Encapsulation of Lactobacillus rhamnosus GG in microparticles: influence of casein to whey protein ratio on bacterial survival during digestion. Innov Food Sci Emerg Technol. 2013;19:233–42.CrossRefGoogle Scholar
  24. 24.
    Sohail A, Turner MS, Prabawati EK, Coombes AGA, Bhandari B. Evaluation of Lactobacillus rhamnosus GG and Lactobacillus acidophilus NCFM encapsulated using a novel impinging aerosol method in fruit food products. Int J Food Microbiol. 2012;157:162–6.CrossRefPubMedGoogle Scholar
  25. 25.
    Gandomi H, Abbaszadeh S, Misaghi A, Bokaie S, Noori N. Effect of chitosan-alginate encapsulation with inulin on survival of Lactobacillus rhamnosus GG during apple juice storage and under simulated gastrointestinal conditions. LWT Food Sci Technol. 2016;69:365–71.CrossRefGoogle Scholar
  26. 26.
    Ying DY, Phoon MC, Sanguansri L, Weerakkody R, Burgar I, Augustin MA. Microencapsulated Lactobacillus rhamnosus GG powders: relationship of powder physical properties to probiotic survival during storage. J Food Sci. 2010;75:588–95.CrossRefGoogle Scholar
  27. 27.
    Doherty SB, Gee VL, Ross RP, Stanton C, Fitzgerald GF, Brodkorb A. Development and characterisation of whey protein micro-beads as potential matrices for probiotic protection. Food Hydrocoll. 2011;25:1604–17.CrossRefGoogle Scholar
  28. 28.
    Cheow WS, Hadinoto K. Biofilm-like Lactobacillus rhamnosus probiotics encapsulated in alginate and carrageenan microcapsules exhibiting enhanced thermotolerance and freeze-drying resistance. Biomacromolecules. 2013;14:3214–22.CrossRefPubMedGoogle Scholar
  29. 29.
    Jiménez-Pranteda ML, Poncelet D, Náder-Macías ME, Arcos A, Aguilera M, Monteoliva-Sánchez M, et al. Stability of lactobacilli encapsulated in various microbial polymers. J Biosci Bioeng. 2012;113:179–84.CrossRefPubMedGoogle Scholar
  30. 30.
    Zhu SC, Ying DY, Sanguansri L, Tang JW, Augustin MA. Both stereo-isomers of glucose enhance the survival rate of microencapsulated Lactobacillus rhamnosus GG during storage in the dry state. J Food Eng. 2013;116:809–13.CrossRefGoogle Scholar
  31. 31.
    Sengupta A, Mujacic M, Davis EJ. Detection of bacteria by surface-enhanced Raman spectroscopy. Anal Bioanal Chem. 2006;386:1379–86.CrossRefPubMedGoogle Scholar
  32. 32.
    Le Ru EC, Etchegoin PG. Principles of surface enhanced Raman scattering and related plasmonic effects. First ed. Elsevier ScienceGoogle Scholar
  33. 33.
    Frens G. Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions. Nat Phys Sci. 1973;241:20–2.CrossRefGoogle Scholar
  34. 34.
    Bastús NG, Comenge J, Puntes V. Kinetically controlled seeded growth synthesis of citrate-stabilized gold nanoparticles of up to 200 nm: size focusing versus Ostwald ripening. Langmuir. 2011;27:11098–105.CrossRefPubMedGoogle Scholar
  35. 35.
    Ziegler C, Eychmüller A. Seeded growth synthesis of uniform gold nanoparticles with diameters of 15-300 nm. J Phys Chem C. 2011;115:4502–6.CrossRefGoogle Scholar
  36. 36.
    Brown KR, Walter DG, Natan MJ. Seeding of colloidal Au nanoparticle solutions. 2. Improved control of particle size and shape. Chem Mater. 2000;12:306–13.CrossRefGoogle Scholar
  37. 37.
    Mayer KM, Hafner JH. Localized surface plasmon resonance sensors. Chem Rev. 2011;111:3828–57.CrossRefPubMedGoogle Scholar
  38. 38.
    Bell SEJ, Sirimuthu NMS. Surface-enhanced Raman spectroscopy as a probe of competitive binding by anions to citrate-reduced silver colloids. J Phys Chem A. 2005;109:7405–10.CrossRefPubMedGoogle Scholar
  39. 39.
    Bae DR, Chang SJ, Huh YS, Han YK, Lee YJ, Yi GR, et al. Surfactant size effect on surface-enhanced Raman scattering intensity from silver nanoparticles. J Nanosci Nanotechnol. 2013;13:5840–3.CrossRefPubMedGoogle Scholar
  40. 40.
    Akanny E, Bonhommé A, Bois L, Minot S, Bourgeois S, Bordes C, et al. Development and comparison of surface-enhanced Raman scattering gold substrates for in situ characterization of “model” analytes in organic and aqueous media. Chem Africa. 2019.
  41. 41.
    Minati L, Benetti F, Chiappini A, Speranza G. One-step synthesis of star-shaped gold nanoparticles. Colloids Surfaces A Physicochem Eng Asp. 2014;441:623–8.CrossRefGoogle Scholar
  42. 42.
    Zeng QC, Zhang E, Dong H, Tellinghuisen J. Weighted least squares in calibration: estimating data variance functions in high-performance liquid chromatography. J Chromatogr A. 2008;1206:147–52.CrossRefPubMedGoogle Scholar
  43. 43.
    LeRu EC, Meyer M, Etchegoin PG, Blackie E. Surface enhanced Raman scattering enhancement factors: a comprehensive study. J Phys Chem C. 2007;111:13794–803.CrossRefGoogle Scholar
  44. 44.
    Pamies R, Hernández Cifre JG, Espín VF, Collado-González M, Guillermo Díaz Banos F, de la García Torre J. Aggregation behaviour of gold nanoparticles in saline aqueous media. J Nanopart Res. 2014;16:2376.CrossRefGoogle Scholar
  45. 45.
    Xu JX, Siriwardana K, Zhou Y, Zou S, Zhang D. Quantification of gold nanoparticle ultraviolet-visible extinction, absorption, and scattering cross-section spectra and scattering depolarization spectra: the effects of nanoparticle geometry, solvent composition, ligand functionalization, and nanoparticle aggregation. Anal Chem. 2018;90:785–93.CrossRefPubMedGoogle Scholar
  46. 46.
    Oncsik T, Trefalt G, Borkovec M, Szilagyi I. Specific ion effects on particle aggregation induced by monovalent salts within the Hofmeister series. Langmuir. 2015;31:3799–807.CrossRefPubMedGoogle Scholar
  47. 47.
    El Badawy AM, Luxton TP, Silva RG, Scheckel KG, Suidan MT, Tolaymat TM. Impact of environmental conditions (pH, ionic strength, and electrolyte type) on the surface charge and aggregation of silver nanoparticles suspensions. Environ Sci Technol. 2010;44:1260–6.CrossRefPubMedGoogle Scholar
  48. 48.
    El Badawy AM, Scheckel KG, Suidan M, Tolaymat T. The impact of stabilization mechanism on the aggregation kinetics of silver nanoparticles. Sci Total Environ. 2012;429:325–31.CrossRefPubMedGoogle Scholar
  49. 49.
    Hao F, Nehl CL, Hafner JH, Nordlander P. Plasmon resonances of a gold nanostar. Nano Lett. 2007;7:729–32.CrossRefPubMedGoogle Scholar
  50. 50.
    Fabris L. Gold-based SERS tags for biomedical imaging. J Opt. 2015;17:1–14.CrossRefGoogle Scholar
  51. 51.
    Wang Y, Yan B, Chen L. SERS Tags: novel optical nanoprobes for bioanalysis. Chem Rev. 2013;113:1391–428.CrossRefPubMedGoogle Scholar
  52. 52.
    Glaspell GP, Zuo C, Jagodzinski PW. Surface enhanced raman spectroscopy using silver nanoparticles: the effects of particle size and halide ions on aggregation. J Clust Sci. 2005;16:39–51.CrossRefGoogle Scholar
  53. 53.
    Hildebrandt P, Keller S, Hoffmann A, Vanhecke F, Schrader B. Enhancement factor of surface-enhanced Raman scattering on silver and gold surfaces upon near-infrared excitation. Indication of an unusual strong contribution of the chemical effect. J Raman Spectrosc. 1993;24:791–6.CrossRefGoogle Scholar
  54. 54.
    Doering WE, Nie S. Single-molecule and single-nanoparticle SERS: examining the roles of surface active sites and chemical enhancement. J Phys Chem B. 2002;106:311–7.CrossRefGoogle Scholar
  55. 55.
    Grochala W, Kudelski A, Bukowska J. Anion-induced charge-transfer enhancement in SERS and SERRS spectra of Rhodamine 6G on a silver electrode: how important is it? J Raman Spectrosc. 1998;29:681–5.CrossRefGoogle Scholar
  56. 56.
    Dong X, Gu H, Liu F. Study of the surface-enhanced Raman spectroscopy of residual impurities in hydroxylamine-reduced silver colloid and the effects of anions on the colloid activity. Spectrochim Acta - Part A Mol Biomol Spectrosc. 2012;88:97–101.CrossRefGoogle Scholar
  57. 57.
    Futamata M, Maruyama Y. LSP spectral changes correlating with SERS activation and quenching for R6G on immobilized Ag nanoparticles. Appl Phys B Lasers Opt. 2008;93:117–30.CrossRefGoogle Scholar
  58. 58.
    Schneider S, Grau H, Halbig P, Freunscht P, Nickel U. Stabilization of silver colloids by various types of anions and their effect on the surface-enhanced Raman spectra of organic dyes. J Raman Spectrosc. 1996;27:57–68.CrossRefGoogle Scholar
  59. 59.
    Fromm DP, Sundaramurthy A, Kinkhabwala A, Schuck PJ, Kino GS, Moerne WE. Exploring the chemical enhancement for surface-enhanced Raman scattering with Au bowtie nanoantennas. J Chem Phys. 2006;124:061101.CrossRefGoogle Scholar
  60. 60.
    Ko H, Singamaneni S, Tsukruk VV. Nanostructured surfaces and assemblies as SERS media. Small. 2008;4:1576–99.CrossRefPubMedGoogle Scholar
  61. 61.
    Nikoobakht B, Wang J, El-Sayed MA. Surface-enhanced Raman scattering of molecules adsorbed on gold nanorods: off-surface plasmon resonance condition. Chem Phys Lett. 2002;366:17–23.CrossRefGoogle Scholar
  62. 62.
    Zhao LL, Jensen L, Schatz GC. Surface-enhanced Raman scattering of pyrazine at the junction between two Ag20 nanoclusters. Nano Lett. 2006;6:1229–34.CrossRefPubMedGoogle Scholar
  63. 63.
    Gao P, Weaver MJ. Metal-adsorbate vibrational frequencies as a probe of surface bonding: halides and pseudohalides at gold electrodes. J Phys Chem. 1986;90:4057–63.CrossRefGoogle Scholar
  64. 64.
    Melendres CA, Hahn F, Bowmaker GA. Oxyanion adsorption and competition at a gold electrode. Electrochim Acta. 2000;46:9–13.CrossRefGoogle Scholar
  65. 65.
    Niaura G, Gaigalas AK, Vilker VL. Surface-enhanced Raman spectroscopy of phosphate anions: adsorption on silver, gold, and copper electrodes. J Phys Chem B. 1997;101:9250–62.CrossRefGoogle Scholar
  66. 66.
    Vega MM, Bonifacio A, Lughi V, Marsi S, Carrato S, Sergo V. Long-term stability of surfactant-free gold nanostars. J Nanopart Res. 2014;16:2729.CrossRefGoogle Scholar
  67. 67.
    Jarvis RM, Goodacre R. Discrimination of bacteria using surface-enhanced Raman spectroscopy. Anal Chem. 2004;6:40–7.CrossRefGoogle Scholar
  68. 68.
    Kahraman M, Keseroǧlu K, Çulha M. On sample preparation for surface-enhanced Raman scattering (SERS) of bacteria and the source of spectral features of the spectra. Appl Spectrosc. 2011;65:500–6.CrossRefPubMedGoogle Scholar
  69. 69.
    Kahraman M, Yazici MM, Şahin F, Çulha M. Convective assembly of bacteria for surface-enhanced Raman scattering. Langmuir. 2008;24:894–901.CrossRefPubMedGoogle Scholar
  70. 70.
    Zeiri L, Bronk BV, Shabtai Y, Eichler J, Efrima S. Surface-enhanced Raman spectroscopy as a tool for probing specific biochemical components in bacteria. Appl Spectrosc. 2004;58:33–40.CrossRefPubMedGoogle Scholar
  71. 71.
    Kubryk P, Niessner R, Ivleva NP. The origin of the band at around 730 cm-1 in the SERS spectra of bacteria: a stable isotope approach. Analyst. 2016;141:2874–8.CrossRefPubMedGoogle Scholar
  72. 72.
    Premasiri WR, Lee JC, Sauer-budge A, Theberge R, Costello E, Ziegler LD, et al. The biochemical origins of the surface enhanced Raman spectra of bacteria: metabolomics profiling by SERS. Anal Bioanal Chem. 2016;408:4631–47.CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Weiss R, Elsner M. Surface-enhanced Raman spectroscopy of microorganisms: limitations and applicability on the single-cell level. Analyst. 2019;144:943–53.CrossRefPubMedGoogle Scholar
  74. 74.
    Torres EL, Winefordner JD. Trace determination of nitrogen-containing drugs by surface enhanced Raman scattering spectrometry on silver colloids. Anal Chem. 1987;59:1626–32.CrossRefPubMedGoogle Scholar
  75. 75.
    Sackmann M, Materny A. Surface enhanced Raman scattering (SERS) – a quantitative analytical tool? J Raman Spectrosc. 2006;37:305–10.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institut des Sciences Analytiques, UMR 5280, CNRS, ENS LyonUniversité Lyon 1, Université de LyonVilleurbanneFrance
  2. 2.CNRS, LAGEPP UMR 5007Univ Lyon, Université Claude Bernard Lyon 1VilleurbanneFrance
  3. 3.Equipe de Recherche Bactéries Pathogènes Opportunistes et Environnement, UMR CNRS 5557 Ecologie MicrobienneUniversité de Lyon 1 & VetAgro SupVilleurbanneFrance
  4. 4.Laboratoire de Bactériologie, Institut des Agents Infectieux, Centre de Biologie et Pathologie NordHospices Civils de Lyon (HCL)LyonFrance
  5. 5.ISPB-School of PharmacyUniversité Lyon 1, Université de LyonLyonFrance

Personalised recommendations