Advertisement

Analytical and Bioanalytical Chemistry

, Volume 411, Issue 21, pp 5545–5554 | Cite as

Correlations between odour activity and the structural modifications of acrylates

  • Patrick Bauer
  • Philipp Denk
  • Julia Maria Fuss
  • Katja Lorber
  • Eva Ortner
  • Andrea BuettnerEmail author
Research Paper

Abstract

Acrylates (acrylic esters) are versatile monomers that are widely used in polymer formulations because of their highly reactive α,β-unsaturated carboxyl structure. Commonly used acrylates such as butyl acrylate are known to emit a strong unpleasant odour, and the monomers are therefore potential off-odorants in acrylic polymers. However, up to now, the odour properties of structurally related acrylic esters have not been characterised in detail. To obtain deeper insights into the smell properties of different acrylates, we investigated the relationship between the molecular structure and odour thresholds as well as the odour qualities of 20 acrylic esters, nine of these synthesised here for the first time. The OT values of 16 acrylates fell within the range from 0.73 to 20 ng/Lair, corresponding to a high-odour activity. Moreover, sec-butyl acrylate and 2-methoxyphenyl acrylate showed even lower OT values of 0.073 and 0.068, respectively. On the other hand, the OT values of the hydroxylated acrylates 2-hydroxyethyl acrylate and 2-hydroxypropyl acrylate were 5–244 times higher than those of the other compounds, demonstrating that the presence of a hydroxyl group obviously favours odour inactivity.

Keywords

Acrylates Off-odour Olfactometry Synthesis Odour threshold Odour quality 

Notes

Acknowledgements

This study was carried out within the framework of the Campus of the Senses, a joint endeavour of the Fraunhofer Institutes for Process Engineering and Packaging IVV and Integrated Circuits IIS, together with Friedrich-Alexander-Universität Erlangen-Nürnberg as an academic partner. The Campus of the Senses initiative is financially supported by the Bavarian Ministry of Economic Affairs, Regional Development and Energy (STMWI) and the Fraunhofer-Gesellschaft.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethics statement

The study was conducted in agreement with the Declaration of Helsinki. The study (registration number 180_16B) was approved by the Ethical Committee of the Medical Faculty, Friedrich-Alexander-Universität Erlangen-Nürnberg. Informed consent was obtained from all subjects participating in the study.

Supplementary material

216_2019_1936_MOESM1_ESM.pdf (334 kb)
ESM 1 (PDF 334 kb)

References

  1. 1.
    Doty RL. Neurotoxic exposure and impairment of the chemical senses of taste and smell. Handb Clin Neurol. 2015;131(3):26.Google Scholar
  2. 2.
    Ohara T, Sato T, Shimizu N, Prescher G, Schwind H, Weiberg O, et al. Acrylic acid and derivatives. In: Ullmann’s encyclopedia of industrial chemistry. Weinheim: Wiley-VCH Verlag; 2003. p. 19.  https://doi.org/10.1002/14356007.a01_161.pub2.Google Scholar
  3. 3.
    Nanetti P. Lackrohstoffkunde. 5th ed. Hannover: Vincetz Network; 2017.Google Scholar
  4. 4.
    Zondlo Fiume M. Final report on the safety assessment of acrylates copolymer and 33 related cosmetic ingredients. Int J Toxicol. 2002;21(Suppl 3):1–50.  https://doi.org/10.1080/10915810290169800.Google Scholar
  5. 5.
    Denk P, Buettner A. Sensory characterization and identification of odorous constituents in acrylic adhesives. Int J Adhes Adhes. 2017;78:182–8.  https://doi.org/10.1016/j.ijadhadh.2017.06.020.CrossRefGoogle Scholar
  6. 6.
    Bauer P, Buettner A. Characterization of odorous and potentially harmful substances in artists’ acrylic paint. Front Public Health. 2018;6:350.  https://doi.org/10.3389/fpubh.2018.00350.CrossRefGoogle Scholar
  7. 7.
    Leonardos G, Kendall D, Barnard N. Odor threshold determinations of 53 odorant chemicals. J Air Pollut Control Assoc. 1969;19(2):91–5.  https://doi.org/10.1080/00022470.1969.10466465.CrossRefGoogle Scholar
  8. 8.
    Murnane SS, Lehocky AH, Owens PD, AIHA (2013) Odor thresholds for chemicals with established health standards. In: Murnane SS, Lehocky AH, Owens PD (eds)Google Scholar
  9. 9.
    van Den Dool H, Dec. Kratz P. A generalization of the retention index system including linear temperature programmed gas—liquid partition chromatography. J Chromatogr A. 1963;11:463–71.  https://doi.org/10.1016/s0021-9673(01)80947-x.CrossRefGoogle Scholar
  10. 10.
    Ullrich F, Grosch W. Identification of the most intense volatile flavour compounds formed during autoxidation of linoleic acid. Z Lebensm Unters Forsch. 1987;184(4):277–82.CrossRefGoogle Scholar
  11. 11.
    Teranishi R, Buttery RG, Guadagni DG. Odor quality and chemical structure in fruit and vegetable flavors. Ann N Y Acad Sci. 1974;237(1):209–16.  https://doi.org/10.1111/j.1749-6632.1974.tb49855.x.CrossRefGoogle Scholar
  12. 12.
    Prieto J, Kiene J. Holzbeschichtung : Chemie und Praxis. Coatings Compendien. Hannover: Vincentz Network; 2007.Google Scholar
  13. 13.
    Becker HGO, Beckert R. Organikum : organisch-chemisches Grundpraktikum. Weinheim; [Great Britain]: Wiley-VCH; 2009.Google Scholar
  14. 14.
    Kim JH, Park ES, Shim JH, Kim MN, Moon WS, Chung KH, et al. Antimicrobial activity of p-hydroxyphenyl acrylate derivatives. J Agric Food Chem. 2004;52(25):7480–3.  https://doi.org/10.1021/jf0499018.CrossRefGoogle Scholar
  15. 15.
    Kraft P, Mannschreck A. The enantioselectivity of odor sensation: some examples for undergraduate chemistry courses. J Chem Educ. 2010;87(6):598–603.  https://doi.org/10.1021/ed100128v.CrossRefGoogle Scholar
  16. 16.
    Leitereg TJ, Guadagni DG, Harris J, Mon TR, Teranishi R. Evidence for the difference between the odours of the optical isomers (+)- and (−)-carvone. Nature. 1971;230(5294):455–6.  https://doi.org/10.1038/230455a0.CrossRefGoogle Scholar
  17. 17.
    Polak EH, Provasi J. Odor sensitivity to geosmin enantiomers. Chem Senses. 1992;17(1):23–6.  https://doi.org/10.1093/chemse/17.1.23.CrossRefGoogle Scholar
  18. 18.
    Schoenauer S, Polster J, Schieberle P. Influence of structural modification and chirality on the odor potency and odor quality of thiols. ACS Symp Ser. 2015;1212:135–46.  https://doi.org/10.1021/bk-2015-1212.ch010.CrossRefGoogle Scholar
  19. 19.
    Wakabayashi M, Wakabayashi H, Nörenberg S, Kubota K, Engel K-H. Comparison of odour thresholds and odour qualities of the enantiomers of 4-mercapto-2-alkanones and 4-acetylthio-2-alkanones. Flavour Fragr J. 2015;30(2):171–8.  https://doi.org/10.1002/ffj.3228.CrossRefGoogle Scholar
  20. 20.
    Lorber K, Schieberle P, Buettner A. Influence of the chemical structure on odor qualities and odor thresholds in homologous series of alka-1,5-dien-3-ones, alk-1-en-3-ones, alka-1,5-dien-3-ols, and alk-1-en-3-ols. J Agric Food Chem. 2014;62(5):1025–31.  https://doi.org/10.1021/jf404885j.CrossRefGoogle Scholar
  21. 21.
    Schranz M, Lorber K, Klos K, Kerschbaumer J, Buettner A. Influence of the chemical structure on the odor qualities and odor thresholds of guaiacol-derived odorants, part 1: alkylated, alkenylated and methoxylated derivatives. Food Chem. 2017;232:808–19.  https://doi.org/10.1016/j.foodchem.2017.04.070.CrossRefGoogle Scholar
  22. 22.
    Wagenstaller M, Buettner A. Coffee aroma constituents and odorant metabolites in human urine. Metabolomics. 2013;10(2):225–40.  https://doi.org/10.1007/s11306-013-0581-2.CrossRefGoogle Scholar
  23. 23.
    Burdock GA. Fenaroli’s handbook of flavor ingredients. 6th ed. Boca Raton: CRC Press; 2010.Google Scholar
  24. 24.
    Toontom N, Posri W, Lertsiri S, Meenune M (2016) Effect of drying methods on Thai dried chilli’s hotness and pungent odour characteristics and consumer liking, vol 23Google Scholar
  25. 25.
    Sonmezdag AS, Kelebek H, Selli S. Volatile and key odourant compounds of Turkish Berberis crataegina fruit using GC-MS-Olfactometry. Nat Prod Res. 2018;32(7):777–81.  https://doi.org/10.1080/14786419.2017.1360882.CrossRefGoogle Scholar
  26. 26.
    Geithe C, Noe F, Kreissl J, Krautwurst D. The broadly tuned odorant receptor OR1A1 is highly selective for 3-methyl-2,4-nonanedione, a key food odorant in aged wines, tea, and other foods. Chem Senses. 2017;42(3):181–93.  https://doi.org/10.1093/chemse/bjw117.CrossRefGoogle Scholar
  27. 27.
    Feng Y, Cai Y, Fu X, Zheng L, Xiao Z, Zhao M. Comparison of aroma-active compounds in broiler broth and native chicken broth by aroma extract dilution analysis (AEDA), odor activity value (OAV) and omission experiment. Food Chem. 2018;265:274–80.  https://doi.org/10.1016/j.foodchem.2018.05.043.CrossRefGoogle Scholar
  28. 28.
    DePass LR, Maronpot RR, Weil CS. Dermal oncogenicity bioassays of monofunctional and multifunctional acrylates and acrylate-based oligomers. J Toxicol Environ Health. 1985;16(1):55–60.  https://doi.org/10.1080/15287398509530718.CrossRefGoogle Scholar
  29. 29.
    Wenzel-Hartung RP, Brune H, Klimisch H-JJJCR, Oncology C. Dermal oncogenicity study of 2-ethylhexyl acrylate by epicutaneous application in male C3H/HeJ mice. J Cancer Res Clin Oncol. 1989;115(6):543–9.  https://doi.org/10.1007/bf00391355.CrossRefGoogle Scholar
  30. 30.
    Mombaerts P. The human repertoire of odorant receptor genes and pseudogenes. Annu Rev Genomics Hum Genet. 2001;2:493–510.  https://doi.org/10.1146/annurev.genom.2.1.493.CrossRefGoogle Scholar
  31. 31.
    Keller A, Zhuang H, Chi Q, Vosshall LB, Matsunami H. Genetic variation in a human odorant receptor alters odour perception. Nature. 2007;449:468.  https://doi.org/10.1038/nature06162.CrossRefGoogle Scholar
  32. 32.
    Zhang X, Zhang Q-Y, Liu D, Su T, Weng Y, Ling G, et al. Expression of cytochrome P450 and other bibotransformation genes in fetal and adult human nasal mucosa. J Drug Metab Dispos. 2005;33(10):1423–8.  https://doi.org/10.1124/dmd.105.005769.CrossRefGoogle Scholar
  33. 33.
    Chougnet A, Woggon WD, Locher E, Schilling B. Synthesis and in vitro activity of heterocyclic inhibitors of CYP2A6 and CYP2A13, two cytochrome P450 enzymes present in the respiratory tract. Chembiochem. 2009;10(9):1562–7.  https://doi.org/10.1002/cbic.200800712.CrossRefGoogle Scholar
  34. 34.
    Nagashima A, Touhara K. Enzymatic conversion of odorants in nasal mucus affects olfactory glomerular activation patterns and odor perception. J Neurosci. 2010;30(48):16391–8.  https://doi.org/10.1523/JNEUROSCI.2527-10.2010.CrossRefGoogle Scholar
  35. 35.
    Schilling B, Kaiser R, Natsch A, Gautschi MJC. Investigation of odors in the fragrance industry. Chemoecology. 2010;20(2):135–47.  https://doi.org/10.1007/s00049-009-0035-5.CrossRefGoogle Scholar
  36. 36.
    Araneda RC, Kini AD, Firestein S. The molecular receptive range of an odorant receptor. Nat Neurosci. 2000;3:1248.  https://doi.org/10.1038/81774.CrossRefGoogle Scholar
  37. 37.
    Katada S, Hirokawa T, Oka Y, Suwa M, Touhara K. Structural basis for a broad but selective ligand spectrum of a mouse olfactory receptor: mapping the odorant-binding site. J Neurosci. 2005;25(7):1806–15.  https://doi.org/10.1523/JNEUROSCI.4723-04.2005.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Chemistry and Pharmacy, Chair for Aroma and Smell ResearchFriedrich-Alexander-Universität Erlangen-Nürnberg (FAU)ErlangenGermany
  2. 2.Department of Sensory AnalyticsFraunhofer Institute for Process Engineering and Packaging (IVV)FreisingGermany

Personalised recommendations