Skip to main content

Advertisement

Log in

Fluctuation correlation spectroscopy and its applications in homogeneous analysis

  • Review
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Fluctuation correlation spectroscopy (FCS) is a single-molecule/particle detection technique based on measuring signal fluctuations in a highly focused detection volume. Multiple-parameter information can be obtained from the FCS measurement including the amplitude, characteristic diffusion time of correlation curve, and brightness of the adopted probes. The multiple-parameter change is related with physical or chemical change occurring in the probes. Meanwhile, the detection method has advantages such as short sample time in seconds, sample volume with low limit in femtoliters, and mixing to detection without any separations. These advantages make the FCS technique suitable for homogeneous analysis. In this review, we summarized recent novel applications of FCS and its variants in homogeneous analysis including nucleic acid analysis, protein analysis, enzyme activity assay, direct characterization of nanoparticles in solution, and others.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Miller H, Zhou ZK, Shepherd J, Wollman AJM, Leake MC. Single-molecule techniques in biophysics: a review of the progress in methods and applications [J]. Rep Prog Phys. 2018;81(2):024601.

    Article  CAS  PubMed  Google Scholar 

  2. Magde D, Elson E, Webb WW. Thermodynamic fluctuations in a reacting system-measurement by fluorescence correlation spectroscopy [J]. Phys Rev Lett. 1972;29(11):705–8.

    Article  CAS  Google Scholar 

  3. Elson EL, Magde D. Fluorescence correlation spectroscopy. I. Conceptual basis and theory [J]. Biopolymers. 1974;13(1):1–27.

    Article  CAS  Google Scholar 

  4. Magde D, Elson EL, Webb WW. Fluorescence correlation spectroscopy. II. An experimental realization [J]. Biopolymers. 1974;13(1):29–61.

    Article  CAS  PubMed  Google Scholar 

  5. Ehrenberg M, Rigler R. Fluorescence correlation spectroscopy applied to rotational diffusion of macromolecules [J]. Q Rev Biophys. 1976;9(1):69–81.

    Article  CAS  PubMed  Google Scholar 

  6. Rigler R, Mets Ü, Widengren J, Kask P. Fluorescence correlation spectroscopy with high count rate and low background: analysis of translational diffusion [J]. Eur Biophys J. 1993;22(3):169–75.

    Article  CAS  Google Scholar 

  7. Denk W, Strickler JH, Webb WW. Two-photon laser scanning fluorescence microscopy [J]. Science. 1990;248(4951):73–6.

    Article  CAS  PubMed  Google Scholar 

  8. Berland KM, So PT, Gratton E. Two-photon fluorescence correlation spectroscopy: method and application to the intracellular environment [J]. Biophys J. 1995;68(2):694–701.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Schwille P, Haupts U, Maiti S, Webb WW. Molecular dynamics in living cells observed by fluorescence correlation spectroscopy with one- and two-photon excitation [J]. Biophys J. 1999;77(4):2251–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Eggeling C, Ringemann C, Medda R, Schwarzmann G, Sandhoff K, Polyakova S, et al. Direct observation of the nanoscale dynamics of membrane lipids in a living cell [J]. Nature. 2009;457(7233):1159–62.

    Article  CAS  PubMed  Google Scholar 

  11. Rust MJ, Bates M, Zhuang X. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM) [J]. Nat Methods. 2006;3(10):793–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Rittweger E, Han KY, Irvine SE, Eggeling C, Hell SW. STED microscopy reveals crystal colour centres with nanometric resolution [J]. Nat. Photonics. 2009;3(3):144–7.

    Article  CAS  Google Scholar 

  13. Li JL, Dong CQ, Ren JC. Strategies to reduce detection volume of fluorescence correlation spectroscopy (FCS) to realize physiological concentration measurements [J]. Trends Analyt Chem. 2017;89:181–9.

    Article  CAS  Google Scholar 

  14. Gao P, Prunsche B, Zhou L, Nienhaus K, Nienhaus GU. Background suppression in fluorescence nanoscopy with stimulated emission double depletion [J]. Nat Photonics. 2017;11(3):163–9.

    Article  CAS  Google Scholar 

  15. Sahoo H, Schwille P. FRET and FCS—friends or foes? [J]. Chemphyschem. 2011;12(3):532–41.

    Article  CAS  PubMed  Google Scholar 

  16. Kim HD, Nienhaus GU, Ha T, Orr JW, Williamson JR, Chu S. Mg2+-dependent conformational change of RNA studied by fluorescence correlation and FRET on immobilized single molecules [J]. Proc Natl Acad Sci U S A. 2002;99(7):4284–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Meng L, He S, Zhao XS. Determination of equilibrium constant and relative brightness in FRET-FCS by including the third-order correlations [J]. J Phys Chem B. 2017;121(50):11262–72.

    Article  CAS  PubMed  Google Scholar 

  18. Wennmalm S, Chmyrov V, Widengren J, Tjernberg L. Highly sensitive FRET-FCS detects amyloid beta-peptide oligomers in solution at physiological concentrations [J]. Anal Chem. 2015;87(23):11700–5.

    Article  CAS  PubMed  Google Scholar 

  19. Slaughter BD, Allen MW, Unruh JR, Bieber Urbauer RJ, Johnson CK. Single-molecule resonance energy transfer and fluorescence correlation spectroscopy of calmodulin in solution [J]. J Phys Chem B. 2004;108(29):10388–97.

    Article  CAS  Google Scholar 

  20. Price ES, DeVore MS, Johnson CK. Detecting intramolecular dynamics and multiple Forster resonance energy transfer states by fluorescence correlation spectroscopy [J]. J Phys Chem B. 2010;114(17):5895–902.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Thompson NL, Burghardt TP, Axelrod D. Measuring surface dynamics of biomolecules by total internal reflection fluorescence with photobleaching recovery or correlation spectroscopy [J]. Biophys J. 1981;33(3):435–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Thompson NL, Steele BL. Total internal reflection with fluorescence correlation spectroscopy [J]. Nat Protoc. 2007;2(4):878–90.

    Article  CAS  PubMed  Google Scholar 

  23. Mucksch J, Blumhardt P, Strauss MT, Petrov EP, Jungmann R, Schwille P. Quantifying reversible surface binding via surface-integrated fluorescence correlation spectroscopy [J]. Nano Lett. 2018;18(5):3185–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Wohland T, Shi XK, Sankaran J, Stelzer EHK. Single plane illumination fluorescence correlation spectroscopy (SPIM-FCS) probes inhomogeneous three-dimensional environments [J]. Opt Express. 2010;18(10):10627–41.

    Article  CAS  PubMed  Google Scholar 

  25. Krieger JW, Singh AP, Garbe CS, Wohland T, Langowski J. Dual-color fluorescence cross-correlation spectroscopy on a single plane illumination microscope (SPIM-FCCS) [J]. Opt Express. 2014;22(3):2358–75.

    Article  PubMed  Google Scholar 

  26. Krieger JW, Singh AP, Bag N, Garbe CS, Saunders TE, Langowski J, et al. Imaging fluorescence (cross-) correlation spectroscopy in live cells and organisms [J]. Nat Protoc. 2015;10(12):1948–74.

    Article  CAS  PubMed  Google Scholar 

  27. Stelzer EH. Light-sheet fluorescence microscopy for quantitative biology [J]. Nat Methods. 2015;12(1):23–6.

    Article  CAS  PubMed  Google Scholar 

  28. Digman MA, Gratton E. Lessons in fluctuation correlation spectroscopy [J]. Annu Rev Phys Chem. 2011;62:645–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Digman MA, Gratton E. Imaging barriers to diffusion by pair correlation functions [J]. Biophys J. 2009;97(2):665–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Hinde E, Thammasiraphop K, Duong HT, Yeow J, Karagoz B, Boyer C, et al. Pair correlation microscopy reveals the role of nanoparticle shape in intracellular transport and site of drug release [J]. Nat Nanotechnol. 2017;12(1):81–9.

    Article  CAS  PubMed  Google Scholar 

  31. Liu H, Dong CQ, Huang XY, Ren JC. Spatially resolved scattering correlation spectroscopy using a total internal reflection configuration [J]. Anal Chem. 2012;84(8):3561–7.

    Article  CAS  PubMed  Google Scholar 

  32. Wang KL, Qiu X, Dong CQ, Ren JC. Single-molecule technology for rapid detection of DNA hybridization based on resonance light scattering of gold nanoparticles [J]. ChemBioChem. 2007;8(10):1126–9.

    Article  CAS  PubMed  Google Scholar 

  33. Qiu X, Tang LC, Dong CQ, Ren JC. Resonance light scattering correlation spectroscopy—a new single nanoparticles method [J]. Chem J Chinese U. 2009;30(21):1305–8.

    Google Scholar 

  34. Liu H, Dong CQ, Ren JC. Tempo-spatially resolved scattering correlation spectroscopy under dark-field illumination and its application to investigate dynamic behaviors of gold nanoparticles in live cells [J]. J Am Chem Soc. 2014;136(7):2775–85.

    Article  CAS  PubMed  Google Scholar 

  35. Goldenberg DM, Sharkey RM. Radioactive antibodies: a historical review of selective targeting and treatment of cancer [J]. Hosp Pract. 2010;38(3):82–93.

    Article  Google Scholar 

  36. Lewis MR, Kannan R. Development and applications of radioactive nanoparticles for imaging of biological systems [J]. WIREs Nanomed Nanobiotechnol. 2014;6(6):628–40.

    Article  CAS  Google Scholar 

  37. Kharisov BI, Kharissova OV, Berdonosov SS. Radioactive nanoparticles and their main applications: recent advances [J]. Recent Pat Nanotech. 2014;8(2):79–96.

    Article  CAS  Google Scholar 

  38. Solon EG. Use of radioactive compounds and autoradiography to determine drug tissue distribution [J]. Chem Res Toxicol. 2012;25(3):543–55.

    Article  CAS  PubMed  Google Scholar 

  39. Liu X, Wei M, Xu ES, Yang HT, Wei W, Zhang YJ, et al. A sensitive, label-free electrochemical detection of telomerase activity without modification or immobilization [J]. Biosens Bioelectron. 2017;91:347–53.

    Article  CAS  PubMed  Google Scholar 

  40. Wang WJ, Li JJ, Rui K, Gai PP, Zhang JR, Zhu JJ. Sensitive electrochemical detection of telomerase activity using spherical nucleic acids gold nanoparticles triggered mimic-hybridization chain reaction enzyme-free dual signal amplification [J]. Anal Chem. 2015;87(5):3019–26.

    Article  CAS  PubMed  Google Scholar 

  41. Kong B, Zhu AW, Luo YP, Tian Y, Yu YY, Shi GY. Sensitive and selective colorimetric visualization of cerebral dopamine based on double molecular recognition [J]. Angew. Chem. Int. Ed. Engl. 2011;50(8):1837–40.

    Article  CAS  PubMed  Google Scholar 

  42. Tan F, Yang Y, Xie XX, Wang LQ, Deng KQ, Xia XD, et al. Prompting peroxidase-like activity of gold nanorod composites by localized surface plasmon resonance for fast colorimetric detection of prostate specific antigen [J]. Analyst. 2018;143(20):5038–45.

    Article  CAS  PubMed  Google Scholar 

  43. Jiao YF, Liu QY, Qiang H, Chen ZB. Colorimetric detection of L-histidine based on the target-triggered self-cleavage of swing-structured DNA duplex-induced aggregation of gold nanoparticles [J]. Mikrochim Acta. 2018;185(10):452.

    Article  CAS  PubMed  Google Scholar 

  44. Brown JQ, Vishwanath K, Palmer GM, Ramanujam N. Advances in quantitative UV-visible spectroscopy for clinical and pre-clinical application in cancer [J]. Curr Opin Biotechnol. 2009;20(1):119–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Sirajuddin M, Ali S, Badshah A. Drug-DNA interactions and their study by UV-visible, fluorescence spectroscopies and cyclic voltametry [J]. J Photochem Photobiol B. 2013;124:1–19.

    Article  CAS  PubMed  Google Scholar 

  46. Su YY, Deng DY, Zhang LC, Song HJ, Lv Y. Strategies in liquid-phase chemiluminescence and their applications in bioassay [J]. TrAC Trends in Anal Chem. 2016;82:394–411.

    Article  CAS  Google Scholar 

  47. Iranifam M. Analytical applications of chemiluminescence methods for cancer detection and therapy [J]. TrAC. Trends in Anal. Chem. 2014;59:156–83.

    Article  CAS  Google Scholar 

  48. Xu QF, Zhang YH, Zhang CY. A triple-color fluorescent probe for multiple nuclease assays [J]. Chem Commun (Camb). 2015;51(44):9121–4.

    Article  CAS  Google Scholar 

  49. Wang MK, Su DD, Wang GN, Su XG. A fluorometric sensing method for sensitive detection of trypsin and its inhibitor based on gold nanoclusters and gold nanoparticles [J]. Anal Bioanal Chem. 2018;410(26):6891–900.

    Article  CAS  PubMed  Google Scholar 

  50. Hall MD, Yasgar A, Peryea T, Braisted JC, Jadhav A, Simeonov A, et al. Fluorescence polarization assays in high-throughput screening and drug discovery: a review [J]. Methods Appl. Fluoresc. 2016;4(2):022001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Shapiro AB. Investigation of beta-lactam antibacterial drugs, beta-lactamases, and penicillin-binding proteins with fluorescence polarization and anisotropy: a review [J]. Methods Appl Fluoresc. 2016;4(2):024002.

    Article  CAS  PubMed  Google Scholar 

  52. Ruttinger S, Buschmann V, Kramer B, Erdmann R, Macdonald R, Koberling F. Comparison and accuracy of methods to determine the confocal volume for quantitative fluorescence correlation spectroscopy [J]. J Microsc. 2008;232(2):343–52.

    Article  CAS  PubMed  Google Scholar 

  53. Gendron PO, Avaltroni F, Wilkinson KJ. Diffusion coefficients of several rhodamine derivatives as determined by pulsed field gradient-nuclear magnetic resonance and fluorescence correlation spectroscopy [J]. J Fluoresc. 2008;18(6):1093–101.

    Article  CAS  PubMed  Google Scholar 

  54. Ruan LG, Su D, Shao C, Wang JJ, Dong CQ, Huang XY, et al. A sensitive and microscale method for drug screening combining affinity probes and single molecule fluorescence correlation spectroscopy [J]. Analyst. 2015;140(4):1207–14.

    Article  CAS  PubMed  Google Scholar 

  55. Yguerabide JY, Yguerabide EE. Light-scattering submicroscopic particles as highly fluorescent analogs and their use as tracer labels in clinical and biological applications: I. Theory [J]. Anal Biochem. 1998;262(2):137–56.

    Article  CAS  PubMed  Google Scholar 

  56. Yguerabide JY, Yguerabide EE. Light-scattering submicroscopic particles as highly fluorescent analogs and their use as tracer labels in clinical and biological applications: II. Experimental characterization [J]. Anal Biochem. 1998;262(2):157–76.

    Article  CAS  PubMed  Google Scholar 

  57. Yguerabide J, Yguerabide EE. Resonance light scattering particles as ultrasensitive labels for detection of analytes in a wide range of applications [J]. J Cell Biochem Suppl. 2001;84(S37):71–81.

    Article  CAS  Google Scholar 

  58. Alivisatos P. The use of nanocrystals in biological detection [J]. Nat Biotechnol. 2004;22(1):47–52.

    Article  CAS  PubMed  Google Scholar 

  59. Viswambari Devi R, Doble M, Verma RS. Nanomaterials for early detection of cancer biomarker with special emphasis on gold nanoparticles in immunoassays/sensors [J]. Biosens Bioelectron. 2015;68:688–98.

    Article  CAS  PubMed  Google Scholar 

  60. Zhang BC, Liu H, Huang XY, Dong CQ, Ren JC. Size distribution of nanoparticles in solution characterized by combining resonance light scattering correlation spectroscopy with the maximum entropy method [J]. Anal Chem. 2017;89(22):12609–16.

    Article  CAS  PubMed  Google Scholar 

  61. Zhang BC, Lan T, Huang XY, Dong CQ, Ren JC. Optical trapping effect and its calibration method in resonance light scattering correlation spectroscopy of gold nanoparticles in solution [J]. J Phys Chem C. 2014;118(26):14495–501.

    Article  CAS  Google Scholar 

  62. Zhang BC, Lan T, Huang XY, Dong CQ, Ren JC. Sensitive single particle method for characterizing rapid rotational and translational diffusion and aspect ratio of anisotropic nanoparticles and its application in immunoassays [J]. Anal Chem. 2013;85(20):9433–8.

    Article  CAS  PubMed  Google Scholar 

  63. Qin W, Peng T, Gao Y, Wang F, Hu X, Wang K, et al. Catalysis-driven self-thermophoresis of Janus plasmonic nanomotors [J]. Angew. Chem. Int. Ed. Engl. 2017;56(2):515–8.

    Article  CAS  PubMed  Google Scholar 

  64. Ruan LG, Xu ZC, Lan T, Wang JJ, Liu H, Li CD, et al. Highly sensitive method for assay of drug-induced apoptosis using fluorescence correlation spectroscopy [J]. Anal Chem. 2012;84(17):7350–8.

    Article  CAS  PubMed  Google Scholar 

  65. Jiang J, Chen XL, Sun LY, Qing Y, Yang XH, Hu XW, et al. Analysis of the concentrations and size distributions of cell-free DNA in schizophrenia using fluorescence correlation spectroscopy [J]. Transl Psychiatry. 2018;8(1):104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Hou S, Sun L, Wieczorek SA, Kalwarczyk T, Kaminski TS, Holyst R. Fluorescence correlation spectroscopy analysis for accurate determination of proportion of doubly labeled DNA in fluorescent DNA pool for quantitative biochemical assays [J]. Biosens Bioelectron. 2014;51:8–15.

    Article  CAS  PubMed  Google Scholar 

  67. Kinjo M, Rigler R. Ultrasensitive hybridization analysis using fluorescence correlation spectroscopy [J]. Nucleic Acids Res. 1995;23(10):1795–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Eigen M, Rigler R. Sorting single molecules: application to diagnostics and evolutionary biotechnology [J]. Proc Natl Acad Sci U S A. 1994;91(13):5740–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Schwille P, Bieschke J, Oehlenschlager F. Kinetic investigations by fluorescence correlation spectroscopy: the analytical and diagnostic potential of diffusion studies [J]. Biophys Chem. 1997;66(2–3):211–28.

    Article  CAS  PubMed  Google Scholar 

  70. Oehlenschlager F, Schwille P, Eigen M. Detection of HIV-1 RNA by nucleic acid sequence-based amplification combined with fluorescence correlation spectroscopy [J]. Proc Natl Acad Sci U S A. 1996;93(23):12811–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Camacho A, Korn K, Damond M, Cajot J-F, Litborn E, Liao BH, et al. Direct quantification of mRNA expression levels using single molecule detection [J]. J Biotechnol. 2004;107(2):107–14.

    Article  CAS  PubMed  Google Scholar 

  72. Werner A, Skakun VV, Meyer C, Hahn U. RNA dimerization monitored by fluorescence correlation spectroscopy [J]. Eur Biophys J. 2011;40(8):907–21.

    Article  CAS  PubMed  Google Scholar 

  73. Zhang H, De Smedt SC, Remaut K. Fluorescence correlation spectroscopy to find the critical balance between extracellular association and intracellular dissociation of mRNA complexes [J]. Acta Biomater. 2018;75:358–70.

    Article  CAS  PubMed  Google Scholar 

  74. Dong CQ, Zhang PD, Bi R, Ren JC. Characterization of solution-phase DNA hybridization by fluorescence correlation spectroscopy: rapid genotyping of C677T from methylenetetrahydrofolate reductase gene [J]. Talanta. 2007;71(3):1192–7.

    Article  CAS  PubMed  Google Scholar 

  75. Umezu T, Ohyashiki K, Ohyashiki JH. Detection method for quantifying global DNA methylation by fluorescence correlation spectroscopy [J]. Anal Biochem. 2011;415(2):145–50.

    Article  CAS  PubMed  Google Scholar 

  76. Sasaki A, Yamamoto J, Kinjo M, Noda N. Absolute quantification of RNA molecules using fluorescence correlation spectroscopy with certified reference materials [J]. Anal Chem. 2018;90(18):10865–71.

    Article  CAS  PubMed  Google Scholar 

  77. Dong DX, Li JY, Gao Q, Huang XQ, Xu YQ, Li RX. Utilizing RNA/DNA hybridization to directly quantify mRNA levels in microbial fermentation samples [J]. J Microbiol Methods. 2009;79(2):205–10.

    Article  CAS  PubMed  Google Scholar 

  78. Nishina K, Piao W, Yoshida-Tanaka K, Sujino Y, Nishina T, Yamamoto T, et al. DNA/RNA heteroduplex oligonucleotide for highly efficient gene silencing [J]. Nat Commun. 2015;6:7969.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Rosa AMM, Prazeres DMF, Paulo PMR. Fluorescence correlation spectroscopy study of the complexation of DNA hybrids, IgG antibody, and a chimeric protein of IgG-binding ZZ domains fused with a carbohydrate binding module [J]. Phys Chem Chem Phys. 2017;19(25):16606–14.

    Article  CAS  PubMed  Google Scholar 

  80. Rode AB, Endoh T, Sugimoto N. tRNA shifts the G-quadruplex-hairpin conformational equilibrium in RNA towards the hairpin conformer [J]. Angew. Chem. Int. Ed. Engl. 2016;55(46):14315–9.

    Article  CAS  PubMed  Google Scholar 

  81. Abdollah-Nia F, Gelfand MP, Van Orden A. Three-state DNA hairpin conformational dynamics revealed by higher-order fluorescence correlation spectroscopy [J]. J Phys Chem B. 2019;123(7):1491–504.

    Article  CAS  PubMed  Google Scholar 

  82. Bi H, Yin Y, Pan B, Li G, Zhao XS. Scanning single-molecule fluorescence correlation spectroscopy enables kinetics study of DNA hairpin folding with a time window from microseconds to seconds [J]. J Phys Chem Lett. 2016;7(10):1865–71.

    Article  CAS  PubMed  Google Scholar 

  83. Debnath M, Ghosh S, Panda D, Bessi I, Schwalbe H, Bhattacharyya K, et al. Small molecule regulated dynamic structural changes of human G-quadruplexes [J]. Chem Sci. 2016;7(5):3279–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Jung S, Lee D, Kim SW, Kim SY. Persistence length and cooperativity estimation of single stranded DNA using FCS combined with HYDRO program [J]. J Fluoresc. 2017;27(4):1373–83.

    Article  CAS  PubMed  Google Scholar 

  85. Lee J, Kim SW. Analysis of cation-dependent DNA (G3T1)4 shape change using fluorescence correlation spectroscopy [J]. J Fluoresc. 2017;27(6):2037–43.

    Article  CAS  PubMed  Google Scholar 

  86. Ehrlich N, Anhalt K, Hubner C, Brakmann S. Exonuclease III action on microarrays: observation of DNA degradation by fluorescence correlation spectroscopy [J]. Anal Biochem. 2010;399(2):251–6.

    Article  CAS  PubMed  Google Scholar 

  87. Xi XG, Deprez E. Monitoring helicase-catalyzed DNA unwinding by fluorescence anisotropy and fluorescence cross-correlation spectroscopy [J]. Methods. 2010;51(3):289–94.

    Article  CAS  PubMed  Google Scholar 

  88. Fogarty K, JT MP, Scott E, Van Orden A. Probing the ionic atmosphere of single-stranded DNA using continuous flow capillary electrophoresis and fluorescence correlation spectroscopy [J]. Anal Chem. 2008;81(1):465–72.

    Article  CAS  Google Scholar 

  89. Qu P, Yang XX, Li X, Zhou XX, Zhao XS. Direct measurement of the rates and barriers on forward and reverse diffusions of intramolecular collision in overhang oligonucleotides [J]. J Phys Chem B. 2010;114(24):8235–43.

    Article  CAS  PubMed  Google Scholar 

  90. Jung J, Van Orden A. A three-state mechanism for DNA hairpin folding characterized by multiparameter fluorescence fluctuation spectroscopy [J]. J Am Chem Soc. 2006;128(4):1240–9.

    Article  CAS  PubMed  Google Scholar 

  91. Jung J, Ihly R, Scott E, Yu M, Van Orden A. Probing the complete folding trajectory of a DNA hairpin using dual beam fluorescence fluctuation spectroscopy [J]. J Phys Chem B. 2008;112(1):127–33.

    Article  CAS  PubMed  Google Scholar 

  92. Yin YD, Zhou XX, Zhao XSM. Entropy method for analyses of fluorescence correlation spectra of oligonucleotide intra-chain collision [J]. Acta Phys -Chim Sin. 2010;26(4):1087–92.

    CAS  Google Scholar 

  93. Chen XD, Zhou Y, Qu P, Zhao XS. Base-by-base dynamics in DNA hybridization probed by fluorescence correlation spectroscopy [J]. J Am Chem Soc. 2008;130(50):16947–52.

    Article  CAS  PubMed  Google Scholar 

  94. Hu HY, Huang XY, Ren JC. Studies on the formation and stability of triplex DNA using fluorescence correlation spectroscopy [J]. Luminescence. 2016;31(3):830–6.

    Article  CAS  PubMed  Google Scholar 

  95. Rauer B, Neumann E, Widengren J, Rigler R. Fluorescence correlation spectrometry of the interaction kinetics of tetramethylrhodamin α-bungarotoxin with Torpedo californica acetylcholine receptor [J]. Biophys Chem. 1996;58(1–2):3–12.

    Article  CAS  PubMed  Google Scholar 

  96. Chatterjee M, Noding B, Willemse EAJ, Koel-Simmelink MJA, van der Flier WM, Schild D, et al. Detection of contactin-2 in cerebrospinal fluid (CSF) of patients with Alzheimer’s disease using fluorescence correlation spectroscopy (FCS) [J]. Clin Biochem. 2017;50(18):1061–6.

    Article  CAS  PubMed  Google Scholar 

  97. Kristensen K, Urquhart AJ, Thormann E, Andresen TL. Binding of human serum albumin to PEGylated liposomes: insights into binding numbers and dynamics by fluorescence correlation spectroscopy [J]. Nanoscale. 2016;8(47):19726–36.

    Article  CAS  PubMed  Google Scholar 

  98. Zhou XM, Tang YH, Xing D. One-step homogeneous protein detection based on aptamer probe and fluorescence cross-correlation spectroscopy [J]. Anal Chem. 2011;83(8):2906–12.

    Article  CAS  PubMed  Google Scholar 

  99. Xie C, Dong CQ, Ren JC. Study on homogeneous competitive immune reaction by fluorescence correlation spectroscopy: using synthetic peptide as antigen [J]. Talanta. 2009;79(3):971–4.

    Article  CAS  PubMed  Google Scholar 

  100. Mikuni J, Kato M, Taruya S, Tsuganezawa K, Mori M, Ogawa N, et al. A fluorescence correlation spectroscopy-based assay for fragment screening of slowly inhibiting protein-peptide interaction inhibitors [J]. Anal Biochem. 2010;402(1):26–31.

    Article  CAS  PubMed  Google Scholar 

  101. Fujii F, Horiuchi M, Ueno M, Sakata H, Nagao I, Tamura M, et al. Detection of prion protein immune complex for bovine spongiform encephalopathy diagnosis using fluorescence correlation spectroscopy and fluorescence cross-correlation spectroscopy [J]. Anal Biochem. 2007;370(2):131–41.

    Article  CAS  PubMed  Google Scholar 

  102. Tsuganezawa K, Watanabe H, Parker L, Yuki H, Taruya S, Nakagawa Y, et al. A novel Pim-1 kinase inhibitor targeting residues that bind the substrate peptide [J]. J Mol Biol. 2012;417(3):240–52.

    Article  CAS  PubMed  Google Scholar 

  103. Doerks T, Copley RR, Schultz J, Ponting CP, Bork P. Systematic identification of novel protein domain families associated with nuclear functions [J]. Genome Res. 2002;12(1):47–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Liu FC, Dong CQ, Ren JC. A study of the diffusion dynamics and concentration distribution of gold nanospheres (GNSs) without fluorescent labeling inside live cells using fluorescence single particle spectroscopy [J]. Nanoscale. 2018;10(11):5309–17.

    Article  CAS  PubMed  Google Scholar 

  105. He H, Xie C, Ren JC. Nonbleaching fluorescence of gold nanoparticles and its applications in cancer cell imaging [J]. Anal Chem. 2008;80(15):5951–7.

    Article  CAS  PubMed  Google Scholar 

  106. Hwang LC, Wohland T. Dual-color fluorescence cross-correlation spectroscopy using single laser wavelength excitation [J]. Chemphyschem. 2004;5(4):549–51.

    Article  CAS  PubMed  Google Scholar 

  107. Wang JJ, Huang XY, Liu H, Dong CQ, Ren JC. Fluorescence and scattering light cross correlation spectroscopy and its applications in homogeneous immunoassay [J]. Anal Chem. 2017;89(10):5230–7.

    Article  CAS  PubMed  Google Scholar 

  108. Lan T, Dong CQ, Huang XY, Ren JC. Single particle technique for one-step homogeneous detection of cancer marker using gold nanoparticle probes [J]. Analyst. 2011;136(20):4247–53.

    Article  CAS  PubMed  Google Scholar 

  109. Lan T, Dong CQ, Huang XY, Ren JC. A sensitive, universal and homogeneous method for determination of biomarkers in biofluids by resonance light scattering correlation spectroscopy (RLSCS) [J]. Talanta. 2013;116:501–7.

    Article  CAS  PubMed  Google Scholar 

  110. Magbanua E, Hahn U. A fluorescence correlation spectroscopy-based enzyme assay for human dicer, vol. 1095. Berlin: Humana; 2013. p. 103–8.

    Google Scholar 

  111. Bjerneld EJ, Földes-Papp Z, Kall M, Rigler R. Single-molecule surface-enhanced Raman and fluorescence correlation spectroscopy of horseradish peroxidase [J]. J Phys Chem B. 2002;106(6):1213–8.

    Article  CAS  Google Scholar 

  112. Nakata H, Ohtsuki T, Sisido M. A protease inhibitor discovery method using fluorescence correlation spectroscopy with position-specific labeled protein substrates [J]. Anal Biochem. 2009;390(2):121–5.

    Article  CAS  PubMed  Google Scholar 

  113. Su D, Hu XC, Dong CQ, Ren JC. Determination of caspase-3 activity and its inhibition constant by combination of fluorescence correlation spectroscopy with a microwell chip [J]. Anal Chem. 2017;89(18):9788–96.

    Article  CAS  PubMed  Google Scholar 

  114. Kawaguchi M, Terai T, Utata R, Kato M, Tsuganezawa K, Tanaka A, et al. Development of a novel fluorescent probe for fluorescence correlation spectroscopic detection of kinase inhibitors [J]. Bioorg Med Chem Lett. 2008;18(13):3752–5.

    Article  CAS  PubMed  Google Scholar 

  115. Su D, Huang XY, Dong CQ, Ren JC. Quantitative determination of telomerase activity by combining fluorescence correlation spectroscopy with telomerase repeat amplification protocol [J]. Anal Chem. 2018;90(1):1006–13.

    Article  CAS  PubMed  Google Scholar 

  116. Riedel C, Gabizon R, Wilson CAM, Hamadani K, Tsekouras K, Marqusee S, et al. The heat released during catalytic turnover enhances the diffusion of an enzyme [J]. Nature. 2015;517(7533):227–30.

    Article  CAS  PubMed  Google Scholar 

  117. Gunther JP, Borsch M, Fischer P. Diffusion measurements of swimming enzymes with fluorescence correlation spectroscopy [J]. Acc Chem Res. 2018;51(9):1911–20.

    Article  CAS  PubMed  Google Scholar 

  118. Kettling U, Koltermann A, Schwille P, Eigen M. Real-time enzyme kinetics monitored by dual-color fluorescence cross-correlation spectroscopy [J]. Proc Natl Acad Sci U S A. 1998;95(4):1416–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Koltermann A, Kettling U, Bieschke J, Winkler T, Eigen M. Rapid assay processing by integration of dual-color fluorescence cross-correlation spectroscopy: high throughput screening for enzyme activity [J]. Proc Natl Acad Sci U S A. 1998;95(4):1421–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Lee W, Lee YI, Lee J, Davis LM, Deininger P, Soper SA. Cross-talk-free dual-color fluorescence cross-correlation spectroscopy for the study of enzyme activity [J]. Anal Chem. 2010;82(4):1401–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Müller BK, Zaychikov E, Bräuchle C, Lamb DC. Pulsed interleaved excitation [J]. Biophys J. 2005;89(5):3508–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Kapanidis AN, Lee NK, Laurence TA, Doose S, Margeat E, Weiss S. Fluorescence-aided molecule sorting: analysis of structure and interactions by alternating-laser excitation of single molecules [J]. Proc Natl Acad Sci U S A. 2004;101(24):8936–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Larson DR, Zipfel WR, Williams RM, Clark SW, Bruchez MP, Wise FW, et al. Water-soluble quantum dots for multiphoton fluorescence imaging in vivo [J]. Science. 2003;300(5624):1434–6.

    Article  PubMed  Google Scholar 

  124. Zhang PD, Li L, Dong CQ, Qian HF, Ren JC. Sizes of water-soluble luminescent quantum dots measured by fluorescence correlation spectroscopy [J]. Anal Chim Acta. 2005;546(1):46–51.

    Article  CAS  PubMed  Google Scholar 

  125. Yao J, Larson DR, Vishwasrao HD, Zipfel WR, Webb WW. Blinking and nonradiant dark fraction of water-soluble quantum dots in aqueous solution [J]. Proc Natl Acad Sci U S A. 2005;102(40):14284–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Doose S, Tsay JM, Pinaud F, Weiss S. Comparison of photophysical and colloidal properties of biocompatible semiconductor nanocrystals using fluorescence correlation spectroscopy [J]. Anal Chem. 2005;77:2235–42.

    Article  CAS  PubMed  Google Scholar 

  127. Heuff RF, Marrocco M, Cramb DT. Saturation of two-photon excitation provides insight into the effects of a quantum dot blinking suppressant: a fluorescence correlation spectroscopy study [J]. J Phys Chem C. 2007;111(51):18942–9.

    Article  CAS  Google Scholar 

  128. Rochira JA, Gudheti MV, Gould TJ, Laughlin RR, Nadeau JL, Hess ST. Fluorescence intermittency limits brightness in CdSe/ZnS nanoparticles quantified by fluorescence correlation spectroscopy [J]. J Phys Chem C. 2007;111(4):1695–708.

    Article  CAS  Google Scholar 

  129. Seth S, Mondal N, Patra S, Samanta A. Fluorescence blinking and photoactivation of all-inorganic perovskite nanocrystals CsPbBr3 and CsPbBr2I [J]. J Phys Chem Lett. 2016;7(2):266–71.

    Article  CAS  PubMed  Google Scholar 

  130. Wang YL, Chen JJ, Irudayaraj J. Nuclear targeting dynamics of gold nanoclusters for enhanced therapy of HER2+ breast cancer [J]. ACS Nano. 2011;5(12):9718–25.

    Article  CAS  PubMed  Google Scholar 

  131. Chen JJ, Irudayaraj J. Quantitative investigation of compartmentalized dynamics of ErbB2 targeting gold nanorods in live cells by single molecule spectroscopy [J]. ACS Nano. 2009;3(12):4071–9.

    Article  CAS  PubMed  Google Scholar 

  132. Lin Y, Dong CQ, Cao FW, Xiong LQ, Gu HC, Xu H. Size-dependent optical properties of conjugated polymer nanoparticles [J]. RSC Adv. 2017;7(88):55957–65.

    Article  CAS  Google Scholar 

  133. Dong CQ, Irudayaraj J. Hydrodynamic size-dependent cellular uptake of aqueous QDs probed by fluorescence correlation spectroscopy [J]. J Phys Chem B. 2012;116(40):12125–32.

    Article  CAS  PubMed  Google Scholar 

  134. Dong CQ, Ren JC. Measurements for molar extinction coefficients of aqueous quantum dots [J]. Analyst. 2010;135(6):1395–9.

    Article  CAS  PubMed  Google Scholar 

  135. Dong CQ, Huang XY, Ren JC. Characterization of water-soluble luminescent quantum dots by fluorescence correlation spectroscopy [J]. Ann N Y Acad Sci. 2008;1130(1):253–61.

    Article  CAS  PubMed  Google Scholar 

  136. Dong CQ, Bi R, Qian HF, Li L, Ren JC. Coupling fluorescence correlation spectroscopy with microchip electrophoresis to determine the effective surface charge of water-soluble quantum dots [J]. Small. 2006;2(4):534–8.

    Article  CAS  PubMed  Google Scholar 

  137. Dong CQ, Ren JC. Coupling of fluorescence correlation spectroscopy with capillary and microchannel analytical systems and its applications [J]. Electrophoresis. 2014;35(16):2267–78.

    Article  CAS  PubMed  Google Scholar 

  138. Dong CQ, Qian HF, Fang NH, Ren JC. On-line investigation of laser-induced aggregation and Photoactivation of CdTe quantum dots by fluorescence correlation spectroscopy [J]. J Phys Chem C. 2007;111(22):7918–23.

    Article  CAS  Google Scholar 

  139. Dong CQ, Ren JC. Water-soluble mercaptoundecanoic acid (MUA)-coated CdTe quantum dots: one-step microwave synthesis, characterization and cancer cell imaging [J]. Luminescence. 2012;27(3):199–203.

    Article  CAS  PubMed  Google Scholar 

  140. Dong CQ, Qian HF, Fang NH, Ren JC. Study of fluorescence quenching and dialysis process of CdTe quantum dots, using ensemble techniques and fluorescence correlation spectroscopy [J]. J Phys Chem B. 2006;110(23):11069–75.

    Article  CAS  PubMed  Google Scholar 

  141. Dong C, Liu H, Ren J. Assessing the blinking state of fluorescent quantum dots in free solution by combining fluorescence correlation spectroscopy with ensemble spectroscopic methods [J]. Langmuir. 2014;30(43):12969–76.

    Article  CAS  PubMed  Google Scholar 

  142. Yang J, Dong CQ, Ren JC. Chiral ligand-induced photoluminescence intermittence difference of CdTe quantum dots [J]. Luminescence. 2018;33(7):1150–6.

    Article  CAS  PubMed  Google Scholar 

  143. Thomaz AAd, Almeida DB, Pelegati VB, Carvalho HF, Cesar CL. Measurement of the hydrodynamic radius of quantum dots by fluorescence correlation spectroscopy excluding blinking [J]. J Phys Chem B. 2015;119(11):4294–9.

    Article  CAS  PubMed  Google Scholar 

  144. Oura M, Yamamoto J, Jin T, Kinjo M. Investigation of pH-dependent photophysical properties of quantum nanocrystals by fluorescence correlation spectroscopy [J]. Opt Express. 2017;25(2):1435–43.

    Article  CAS  PubMed  Google Scholar 

  145. Jung S, Park J, Bang J, Kim JY, Kim C, Jeon Y, et al. Light-induced fluorescence modulation of quantum dot-crystal violet conjugates: stochastic off-on-off cycles for multicolor patterning and super-resolution [J]. J Am Chem Soc. 2017;139(22):7603–15.

    Article  CAS  PubMed  Google Scholar 

  146. Abbandonato G, Hoffmann K, Resch-Genger U. Determination of quantum yields of semiconductor nanocrystals at the single emitter level via fluorescence correlation spectroscopy [J]. Nanoscale. 2018;10(15):7147–54.

    Article  CAS  PubMed  Google Scholar 

  147. Huang XY, Li L, Qian HF, Dong CQ, Ren JC. A resonance energy transfer between chemiluminescent donors and luminescent quantum-dots as acceptors (CRET) [J]. Angew Chem Int Ed Engl. 2006;45(31):5140–3.

    Article  CAS  PubMed  Google Scholar 

  148. Rocker C, Potzl M, Zhang F, Parak WJ, Nienhaus GU. A quantitative fluorescence study of protein monolayer formation on colloidal nanoparticles [J]. Nat Nanotechnol. 2009;4(9):577–80.

    Article  CAS  PubMed  Google Scholar 

  149. Shao LW, Dong CQ, Sang FM, Qian HF, Ren JC. Studies on interaction of CdTe quantum dots with bovine serum albumin using fluorescence correlation spectroscopy [J]. J Fluoresc. 2009;19(1):151–7.

    Article  CAS  PubMed  Google Scholar 

  150. Wang ZH, Zhao QY, Cui MH, Pang SC, Wang JF, Liu Y, et al. Probing temperature- and pH-dependent binding between quantum dots and bovine serum albumin by fluorescence correlation spectroscopy [J]. Nanomaterials (Basel). 2017;7(5):93.

    Article  CAS  Google Scholar 

  151. Ruan LG, Ge M, Huang XY, Ren JC. Assay of single-cell apoptosis by ensemble and single-molecule fluorescence methods: annexin-V/polyethylene glycol-functionalized quantum dots as probes [J]. Langmuir. 2018;34(34):10040–7.

    Article  CAS  PubMed  Google Scholar 

  152. Wang JJ, Huang XY, Zan F, Guo CG, Cao CX, Ren JC. Studies on bioconjugation of quantum dots using capillary electrophoresis and fluorescence correlation spectroscopy [J]. Electrophoresis. 2012;33(13):1987–95.

    Article  CAS  PubMed  Google Scholar 

  153. Liedl T, Keller S, Simmel FC, Radler JO, Parak WJ. Fluorescent nanocrystals as colloidal probes in complex fluids measured by fluorescence correlation spectroscopy [J]. Small. 2005;1(10):997–1003.

    Article  CAS  PubMed  Google Scholar 

  154. Sengupta P, Garai K, Balaji J, Periasamy N, Maiti S. Measuring size distribution in highly heterogeneous systems with fluorescence correlation spectroscopy [J]. Biophys J. 2003;84(3):1977–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Yi F, Huang XY, Ren JC. Simple and sensitive method for determination of protein kinase activity based on surface charge change of peptide-modified gold nanoparticles as substrates [J]. Anal Chem. 2018;90(6):3871–7.

    Article  CAS  PubMed  Google Scholar 

  156. Huang XY, Ren JC. Gold nanoparticles based chemiluminescent resonance energy transfer for immunoassay of alpha fetoprotein cancer marker [J]. Anal Chim Acta. 2011;686(1–2):115–20.

    Article  CAS  PubMed  Google Scholar 

  157. Lu Y, Huang XY, Ren JC. Sandwich immunoassay for alpha-fetoprotein in human sera using gold nanoparticle and magnetic bead labels along with resonance Rayleigh scattering readout [J]. Microchim Acta. 2013;180(7–8):635–42.

    Article  CAS  Google Scholar 

  158. Xu ZC, Lan T, Huang XY, Dong CQ, Ren JC. A sensitive assay of mercury using fluorescence correlation spectroscopy of gold nanoparticles [J]. Luminescence. 2015;30(5):605–10.

    Article  CAS  PubMed  Google Scholar 

  159. Wang JJ, Ma SY, Ren JC, Yang JX, Qu Y, Ding DR, et al. Fluorescence enhancement of cysteine-rich protein-templated gold nanoclusters using silver(I) ions and its sensing application for mercury. (II) [J]. Sensors Actuators B Chem. 2018;267:342–50.

    Article  CAS  Google Scholar 

  160. Das NK, Ghosh S, Jaiswal S, Tewary A, Mukherjee S. Micelles entrapped Cresyl violet can selectively detect copper and mercury ions in solution: a fluorescence correlation spectroscopy investigation [J]. Chem Phys Lett. 2017;682:147–53.

    Article  CAS  Google Scholar 

  161. Kuchlyan J, Basak S, Dutta D, Das AK, Mal D, Sarkar N. A new rhodamine derived fluorescent sensor: detection of Hg2+ at cellular level [J]. Chem Phys Lett. 2017;673:84–8.

    Article  CAS  Google Scholar 

  162. Varriale A, Rossi M, Staiano M, Terpetschnig E, Barbieri B, Rossi M, et al. Fluorescence correlation spectroscopy assay for gliadin in food [J]. Anal Chem. 2007;79(12):4687–9.

    Article  CAS  PubMed  Google Scholar 

  163. Bian YN, Huang XY, Ren JC. Sensitive and homogenous immunoassay of fumonisin in foods using single molecule fluorescence correlation spectroscopy [J]. Anal Methods. 2016;8(6):1333–8.

    Article  CAS  Google Scholar 

Download references

Funding

Project funded by China Postdoctoral Science Foundation (Grant number 2018 M640379). This work was sponsored by Shanghai Sailing Program from Shanghai Committee of Science and Technology (Grant number 19YF1422000). This work was also financially supported by the NSFC (Grant Nos. 21327004, 21475087, 21675111 and 81670308).

Author information

Authors and Affiliations

Authors

Contributions

All authors have given approval to the final version of the manuscript.

Corresponding authors

Correspondence to Yuemei Hou or Chaoqing Dong.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Published in the topical collection Young Investigators in (Bio-)Analytical Chemistry with guest editors Erin Baker, Kerstin Leopold, Francesco Ricci, and Wei Wang.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Su, D., Hou, Y., Dong, C. et al. Fluctuation correlation spectroscopy and its applications in homogeneous analysis. Anal Bioanal Chem 411, 4523–4540 (2019). https://doi.org/10.1007/s00216-019-01884-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-019-01884-1

Keywords

Navigation