Facile one-step solvothermal synthesis of a luminescent europium metal-organic framework for rapid and selective sensing of uranyl ions

  • Linnan Li
  • Sensen Shen
  • Jie Su
  • Wanpeng Ai
  • Yu Bai
  • Huwei LiuEmail author
Research Paper
Part of the following topical collections:
  1. New Insights into Analytical Science in China


A simple, cost-effective, and portable uranium sensory material with adequate selectivity is increasingly urgent and would be of great importance in environmental monitoring of radionuclides. Herein, we report a novel luminescent europium metal-organic framework (Eu-MOF) with plenty of Lewis basic sites for binding uranyl ions (UO22+), the most common form of uranium in solution, through a facile one-step solvothermal synthetic route. The mesoporous structure consists of europium nodes and flexible nitrogen-containing ligands with a 29.2 × 20.5 Å2 channel along the c-axis. Furthermore, the obtained material displays characteristic fluorescence of trivalent Eu3+ and could be applied as a turn-off sensory probe targeting UO22+ in solution. Differential fluorescent quenching occurred upon a series of potential interfering ions compared to UO22+ and the detection limit as low as 0.9 μM was achieved with a rapid response.

Graphical abstract


Metal-organic framework Europium Luminescent sensing Uranyl ions 


Funding information

This work was financially supported by the Collaboration Program of Institute of Materials, China Academy of Engineering Physics, the National Natural Science Foundation of China (Grant numbers, 21775008), and the Shanghai Sailing Program (19YF1448800).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

216_2019_1875_MOESM1_ESM.pdf (2.6 mb)
ESM 1 (PDF 2664 kb)
216_2019_1875_MOESM2_ESM.pdf (338 kb)
ESM 2 (PDF 338 kb)


  1. 1.
    Macfarlane AM, Miller M. Nuclear energy and uranium resources. Elements. 2007;3(3):185–92.Google Scholar
  2. 2.
    Betti M. Civil use of depleted uranium. J Environ Radioact. 2003;64(2–3):113–9.Google Scholar
  3. 3.
    Averseng O, Hagege A, Fdr T, Vidaud C. Surface plasmon resonance for rapid screening of uranyl affine proteins. Anal Chem. 2010;82(23):9797–802.Google Scholar
  4. 4.
    Li L, Zhang Y, Li X, Shen S, Huang H, Bai Y, et al. Study on the interaction of uranyl with sulfated beta-cyclodextrin by affinity capillary electrophoresis and molecular dynamics simulation. Electrophoresis. 2016;37(19):2567–73.Google Scholar
  5. 5.
    Bleise A, Danesi PR, Burkart W. Properties, use and health effects of depleted uranium (DU): a general overview. J Environ Radioact. 2003;64(2–3):93–112.Google Scholar
  6. 6.
    Brugge D, Oldmixon B. Exposure pathways and health effects associated with chemical and radiological toxicity of natural uranium: a review. Rev Environ Health. 2005;20(3):177–94.Google Scholar
  7. 7.
    Craft ES, Abu-Qare AW, Flaherty MM, Garofolo MC, Rincavage HL, Abou-Donia MB. Depleted and natural uranium: chemistry and toxicological effects. J Toxicol Environ Health B. 2004;7(4):297–317.Google Scholar
  8. 8.
    Brugge D, Buchner V. Health effects of uranium: new research findings. Rev Environ Health. 2011;26(4):231–49.Google Scholar
  9. 9.
    Yoe JH, Will F III, Black RA. Colorimetric determination of uranium with dibenzoylmethane. Anal Chem. 1953;25(8):1200–4.Google Scholar
  10. 10.
    Rezaei A, Khani H, Masteri-Farahani M, Rofouei MK. A novel extraction and preconcentration of ultra-trace levels of uranium ions in natural water samples using functionalized magnetic-nanoparticles prior to their determination by inductively coupled plasma-optical emission spectrometry. Anal Methods. 2012;4(12):4107–14.Google Scholar
  11. 11.
    Boomer D, Powell M. Determination of uranium in environmental samples using inductively coupled plasma mass spectrometry. Anal Chem. 1987;59(23):2810–3.Google Scholar
  12. 12.
    Goleb J. The determination of uranium isotopes by atomic absorption spectrophotometry. Anal Chim Acta. 1966;34:135–45.Google Scholar
  13. 13.
    Khan MH, Warwick P, Evans N. Spectrophotometric determination of uranium with arsenazo-III in perchloric acid. Chemosphere. 2006;63(7):1165–9.Google Scholar
  14. 14.
    Al-Shawi AW, Dahl R. Determination of thorium and uranium in nitrophosphate fertilizer solution by ion chromatography. J Chromatogr A. 1995;706(1–2):175–81.Google Scholar
  15. 15.
    Dimovasilis PA, Prodromidis MI. An electrochemical sensor for trace uranium determination based on 6-O-palmitoyl-l-ascorbic acid-modified graphite electrodes. Sens Actuators B Chem. 2011;156(2):689–94.Google Scholar
  16. 16.
    Rathore D. Advances in technologies for the measurement of uranium in diverse matrices. Talanta. 2008;77(1):9–20.Google Scholar
  17. 17.
    Santos JS, Teixeira LS, Dos Santos WN, Lemos VA, Godoy JM, Ferreira SL. Uranium determination using atomic spectrometric techniques: an overview. Anal Chim Acta. 2010;674(2):143–56.Google Scholar
  18. 18.
    de Souza AL, Cotrim MEB, Pires MAF. An overview of spectrometric techniques and sample preparation for the determination of impurities in uranium nuclear fuel grade. Microchem J. 2013;106:194–201.Google Scholar
  19. 19.
    Formica M, Fusi V, Giorgi L, Micheloni M. New fluorescent chemosensors for metal ions in solution. Coord Chem Rev. 2012;256(1–2):170–92.Google Scholar
  20. 20.
    Wu P, Hwang K, Lan T, Lu Y. A DNAzyme-gold nanoparticle probe for uranyl ion in living cells. J Am Chem Soc. 2013;135(14):5254–7.Google Scholar
  21. 21.
    Yaghi OM, Li G, Li H. Selective binding and removal of guests in a microporous metal–organic framework. Nature. 1995;378(6558):703.Google Scholar
  22. 22.
    Furukawa H, Cordova KE, O’Keeffe M, Yaghi OM. The chemistry and applications of metal-organic frameworks. Science. 2013;341(6149):1230444.Google Scholar
  23. 23.
    He Y, Zhou W, Qian G, Chen B. Methane storage in metal–organic frameworks. Chem Soc Rev. 2014;43(16):5657–78.Google Scholar
  24. 24.
    Qiu S, Xue M, Zhu G. Metal–organic framework membranes: from synthesis to separation application. Chem Soc Rev. 2014;43(16):6116–40.Google Scholar
  25. 25.
    Lustig WP, Mukherjee S, Rudd ND, Desai AV, Li J, Ghosh SK. Metal–organic frameworks: functional luminescent and photonic materials for sensing applications. Chem Soc Rev. 2017;46(11):3242–85.Google Scholar
  26. 26.
    Hu Z, Deibert BJ, Li J. Luminescent metal–organic frameworks for chemical sensing and explosive detection. Chem Soc Rev. 2014;43(16):5815–40.Google Scholar
  27. 27.
    Huang Y-B, Liang J, Wang X-S, Cao R. Multifunctional metal–organic framework catalysts: synergistic catalysis and tandem reactions. Chem Soc Rev. 2017;46(1):126–57.Google Scholar
  28. 28.
    Cai W, Chu CC, Liu G, Wáng YXJ. Metal–organic framework-based nanomedicine platforms for drug delivery and molecular imaging. Small. 2015;11(37):4806–22.Google Scholar
  29. 29.
    Chen B, Wang L, Xiao Y, Fronczek FR, Xue M, Cui Y, et al. A luminescent metal–organic framework with Lewis basic pyridyl sites for the sensing of metal ions. Angew Chem. 2009;121(3):508–11.Google Scholar
  30. 30.
    Jayaramulu K, Narayanan RP, George SJ, Maji TK. Luminescent microporous metal–organic framework with functional Lewis basic sites on the pore surface: specific sensing and removal of metal ions. Inorg Chem. 2012;51(19):10089–91.Google Scholar
  31. 31.
    Cui Y, Chen B, Qian G. Lanthanide metal-organic frameworks for luminescent sensing and light-emitting applications. Coord Chem Rev 2014;273:76-86.Google Scholar
  32. 32.
    Rocha J, Carlos LD, Paz FAA, Ananias D. Luminescent multifunctional lanthanides-based metal–organic frameworks. Chem Soc Rev. 2011;40(2):926–40.Google Scholar
  33. 33.
    Hao J-N, Yan B. Highly sensitive and selective fluorescent probe for Ag+ based on a Eu 3+ post-functionalized metal–organic framework in aqueous media. J Mater Chem A. 2014;2(42):18018–25.Google Scholar
  34. 34.
    Heine J, Müller-Buschbaum K. Engineering metal-based luminescence in coordination polymers and metal–organic frameworks. Chem Soc Rev. 2013;42(24):9232–42.Google Scholar
  35. 35.
    Meyer L, Schönfeld F, Müller-Buschbaum K. Lanthanide based tuning of luminescence in MOFs and dense frameworks–from mono-and multimetal systems to sensors and films. Chem Commun. 2014;50(60):8093–108.Google Scholar
  36. 36.
    Wang B, Lv X-L, Feng D, Xie L-H, Zhang J, Li M, et al. Highly stable Zr (IV)-based metal–organic frameworks for the detection and removal of antibiotics and organic explosives in water. J Am Chem Soc. 2016;138(19):6204–16.Google Scholar
  37. 37.
    Wanderley MM, Wang C, Wu C-D, Lin W. A chiral porous metal–organic framework for highly sensitive and enantioselective fluorescence sensing of amino alcohols. J Am Chem Soc. 2012;134(22):9050–3.Google Scholar
  38. 38.
    Li L, Shen S, Ai W, Song S, Bai Y, Liu H. Facilely synthesized Eu3+ post-functionalized UiO-66-type metal-organic framework for rapid and highly selective detection of Fe3+ in aqueous solution. Sens Actuators B Chem. 2018;267:542–8.Google Scholar
  39. 39.
    Li L, Shen S, Lin R, Bai Y, Liu H. Rapid and specific luminescence sensing of Cu (ii) ions with a porphyrinic metal–organic framework. Chem Commun. 2017;53(72):9986–9.Google Scholar
  40. 40.
    Lim KS, Jeong SY, Kang DW, Song JH, Jo H, Lee WR, et al. Luminescent metal–organic framework sensor: exceptional Cd2+ turn-on detection and first in situ visualization of Cd2+ ion diffusion into a crystal. Chem Eur J. 2017;23(20):4803–9.Google Scholar
  41. 41.
    Xia T, Song T, Zhang G, Cui Y, Yang Y, Wang Z, et al. A terbium metal–organic framework for highly selective and sensitive luminescence sensing of Hg2+ ions in aqueous solution. Chem Eur J. 2016;22(51):18429–34.Google Scholar
  42. 42.
    Ji G, Liu J, Gao X, Sun W, Wang J, Zhao S, et al. A luminescent lanthanide MOF for selectively and ultra-high sensitively detecting Pb 2+ ions in aqueous solution. J Mater Chem A. 2017;5(21):10200–5.Google Scholar
  43. 43.
    Zhang H, Chen D, Ma H, Cheng P. Real-time detection of traces of benzaldehyde in benzyl alcohol as a solvent by a flexible lanthanide microporous metal–organic framework. Chem Eur J. 2015;21(44):15854–9.Google Scholar
  44. 44.
    Huang Y, Zhou L, Yang L, Tang Z. Self-assembled 3D flower-like NaY (MoO4) 2: Eu3+ microarchitectures: hydrothermal synthesis, formation mechanism and luminescence properties. Opt Mater. 2011;33(6):777–82.Google Scholar
  45. 45.
    Liu Y-Y, Decadt R, Bogaerts T, Hemelsoet K, Kaczmarek AM, Poelman D, et al. Bipyridine-based nanosized metal–organic framework with tunable luminescence by a postmodification with Eu (III): an experimental and theoretical study. J Phys Chem C. 2013;117(21):11302–10.Google Scholar
  46. 46.
    Liu W, Dai X, Bai Z, Wang Y, Yang Z, Zhang L, et al. Highly sensitive and selective uranium detection in natural water systems using a luminescent mesoporous metal–organic framework equipped with abundant Lewis basic sites: a combined batch, X-ray absorption spectroscopy, and first principles simulation investigation. Environ Sci Technol. 2017;51(7):3911–21.Google Scholar
  47. 47.
    Yang W, Bai Z-Q, Shi W-Q, Yuan L-Y, Tian T, Chai Z-F, et al. MOF-76: from a luminescent probe to highly efficient U VI sorption material. Chem Commun. 2013;49(88):10415–7.Google Scholar
  48. 48.
    Chen W-M, Meng X-L, Zhuang G-L, Wang Z, Kurmoo M, Zhao Q-Q, et al. A superior fluorescent sensor for Al 3+ and UO 2 2+ based on a Co (ii) metal–organic framework with exposed pyrimidyl Lewis base sites. J Mater Chem A. 2017;5(25):13079–85.Google Scholar
  49. 49.
    Zhou Y, Chen H-H, Yan B. An Eu 3+ post-functionalized nanosized metal–organic framework for cation exchange-based Fe 3+-sensing in an aqueous environment. J Mater Chem A. 2014;2(33):13691–7.Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Institute of Analytical Chemistry, College of Chemistry and Molecular EngineeringPeking UniversityBeijingChina
  2. 2.The MOE Key Laboratory for Standardization of Chinese Medicines, The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia MedicaShanghai University of Traditional Chinese MedicineShanghaiChina
  3. 3.Analytical Instrumentation CenterPeking UniversityBeijingChina

Personalised recommendations