Skip to main content
Log in

On the spectroscopic examination of printed documents by using a field emission scanning electron microscope with energy-dispersive X-ray spectroscopy (FE-SEM-EDS) and chemometric methods: application in forensic science

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The detection of computer-generated document forgeries has always been a challenging task for forensic document examiners (FDE). With the aim to support the examination processes, Schottky field emission scanning electron microscopy with energy-dispersive X-ray spectroscopy (FE-SEM-EDS) is explored as a recent tool to analyze black toners obtained from laser printers and photocopier machines. Forty samples each from the laser printer and photocopier machines are procured and studied for morphological features, elemental profile, and multivariate analysis. The acquired SEM images and spectra are evaluated to discriminate and classify the toners having a different source of origin. Multivariate analysis is applied to develop a model of classification to successfully classify the printed documents on the basis of the similarities and differences in their composition. Hierarchical cluster analysis (HCA) discriminates the printouts in the forms of groups based on their chemical composition. The laser printer and the photocopier printed documents are grouped into 11 and eight clusters, respectively, based on their elemental composition. Cross-validation is further conducted to assess the capabilities of developed principal component analysis (PCA) and linear discriminant analysis (LDA) models for the examination of printouts from unknown origin.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Kelly JS, Lindblom BS. Scientific examination of questioned documents. 2nd ed. New York: Taylor Francis; 2006.

    Google Scholar 

  2. Marshall G. Recent progress in toner technology. Soc Imaging Sci Technol; 1997.

  3. Scharfe M. Electrophotography and optimization. Letchworth, Hertfordshire, England: Research Studies Press Ltd. New York: John Wiley & Sons INC; 1984.

  4. James EL. The classification of office copy machines from physical characteristics. J Forensic Sci. 1987;32:1293–304.

    Article  Google Scholar 

  5. Totty R. The examination of photocopy documents. Forensic Sci Int. 1999;46:121–6.

    Article  Google Scholar 

  6. Kipphan H. Handbook of print media: technologies and production method: Springer; 2001.

  7. Schien LB. Recent advances in our understanding of toner charging. J Electrost. 1999;46:29–36.

    Article  Google Scholar 

  8. Leach R. The printing ink manual. 4th ed. Berlin: Springer Verlag Gmbh; 1988.

    Book  Google Scholar 

  9. Park J, Ahn S, Yoo J, Kim D, Kim DS. Effects of polymerization process variables on the properties of suspension polymerized toner. In: 18th International Conference on Composite Materials, Edinburgh, Scotland; 2009.

  10. Yang J, Wang TJ, He H, Wei F, Jin Y. Particle size distribution and morphology of in situ suspension polymerized toner. Ind Eng Chem Res. 2003;42:5568–75.

    Article  CAS  Google Scholar 

  11. Lennard C, Mazzella W. A simple combined technique for the analysis of toners and adhesives. J Forensic Sci Soc. 1991;31(3):365–71.

    Article  CAS  Google Scholar 

  12. Meng P, Wang S. Identification of copy machines through pyrolysis chromatography of toners. Int J Doc Exam. 1995;5:88–90.

    Google Scholar 

  13. Verma N, Kumar R, Sharma V. Analysis of laser printer and photocopier toners by spectral properties and chemometrics. Spectrochim Acta A Mol Biomol Spectrosc. 2018;196:40–8.

    Article  CAS  PubMed  Google Scholar 

  14. Merrill RA, Bartick EG, Taylor JH. Forensic discrimination of photocopy and printer toners, part II. Anal Bioanal Chem. 2003;376:1279–85.

    Article  CAS  PubMed  Google Scholar 

  15. Materazzi S, Risoluti R, Pincia S, Romolob FS. New insights in forensic chemistry: NIR/chemometrics analysis of toners for questioned documents examination. Talanta. 2017;174:673–8.

    Article  CAS  PubMed  Google Scholar 

  16. Udristioiu EG, Bunaciu AA, Aboul-Enein HY, Tanase I. Infrared spectrometry in discriminant analysis of laser printer and photocopy toner on questioned documents. Instrum Sci Technol. 2009;37:230–40.

    Article  CAS  Google Scholar 

  17. Trzcinska BM, Brozek-Mucha Z. The possibilities of identifying photocopy toners by means of infrared spectroscopy (FTIR) and scanning microscopy. Mikrochim Acta. 1997;14:235–7.

    CAS  Google Scholar 

  18. Trzcinska BM. Classification of black powder toners on the basis of integrated analytical information provided by Fourier transform infrared spectrometry and X-ray fluorescence spectrometry. J Forensic Sci. 2006;51:919–24.

    Article  CAS  PubMed  Google Scholar 

  19. Egan WJ, Morgan SL, Bartick EG, Merrill RA, Taylor JH III. Forensic discrimination of photocopy and printer toners. II. Discriminant analysis applied to infrared reflection–absorption spectroscopy. Anal Bioanal Chem. 2003;376:1279–85.

    Article  CAS  PubMed  Google Scholar 

  20. Trzcinska BM. Discriminating among powder toners of the same colour by the use of spectroscopic methods. Probl Forensic Sci 2015;80–95.

  21. Johnson C, Martin P, Roberts K, Trejos T, Corzo R, Almirall J, et al. The capability of Raman micro spectroscopy to differentiate printing inks. J Forensic Sci. 2017:1–14.

  22. Chu PC, Cai BY, Tsoi YK, Yuen R, Leung SK, Cheung NH. Forensic analysis of laser printed ink by X-ray fluorescence and laser-excited plume fluorescence. Anal Chem. 2013;85:4311–5.

    Article  CAS  PubMed  Google Scholar 

  23. Williamson R, Raeva A, Almirall J. Characterization of printing inks using DART-Q-TOF-MS and attenuated total reflectance (ATR) FTIR. J Forensic Sci. 2016;61:706–14.

    Article  PubMed  Google Scholar 

  24. Trejos T, Torrione P, Corzo R, Raeva A, Subedi K, Williamson R, et al. A novel forensic tool for the characterization and comparison of printing ink evidence: development and evaluation of a searchable database using data fusion of spectrochemical methods. J Forensic Sci. 2016;61:716–24.

    Article  Google Scholar 

  25. Egan WJ, Galipo RC, Kochanowski BK, Morgan SL, Bartick EG, Miller ML, et al. Forensic discrimination of photocopy and printer toners. III. Multivariate statistics applied to scanning electron microscopy and pyrolysis gas chromatography-mass spectrometry. Anal Bioanal Chem. 2003;376:1286–97.

    Article  CAS  PubMed  Google Scholar 

  26. Gilmour CL. A comparison of laser printed and photocopied documents can they be distinguished? J Can Soc Forensic Sci. 1997;27:245–59.

    Article  Google Scholar 

  27. Brandi J, James B, Gutowski SJ. Differentiation and classification of photocopier toners. Int J Forensic Doc Exam. 1997;3:324–44.

    CAS  Google Scholar 

  28. Trejos T, Corzo R, Subedi K, Almirall J. Characterization of toners and inkjets by laser ablation spectrochemical methods and scanning electron microscopy-energy dispersive X-ray spectroscopy. Spectrochimica Acta B. 2014;92:9–22.

    Article  CAS  Google Scholar 

  29. Corzo R, Subedi K, Trejos T, Almirall J. Evaluation of the forensic utility of scanning electron microscopy-energy dispersive spectroscopy and laser ablation-inductively coupled plasma-mass spectrometry for printing ink examinations. J Forensic Sci. 2016;61:725–34.

    Article  PubMed  Google Scholar 

  30. Szynkowska MI, Czerski K, Paryjczaka T, Parczewskib A. Ablative analysis of black and colored toners using LA-ICP-TOF-MS for the forensic discrimination of photocopy and printer toners. Surf Interface Anal. 2010;42:429–37.

    Article  CAS  Google Scholar 

  31. Almirall J, Trejos T. Applications of LAICPMS to forensic science. Elements. 2016;12:335–40.

    Article  CAS  Google Scholar 

  32. Subedi K, Trejos T, Almirall J. Forensic analysis of printing inks using tandem LIBS and LAICP-MS. Spectrochim Acta B At Spectrosc. 2015;103:76–83.

    Article  CAS  Google Scholar 

  33. Lennard C, Deftar M, Robertson J. Forensic application of laser-induced breakdown spectroscopy for the discrimination of questioned documents. Forensic Sci Int. 2015;254:68–79.

    Article  CAS  PubMed  Google Scholar 

  34. Metzinger A, Rajko R, Galbacs G. Discrimination of paper and print types based on their laser induced breakdown spectra. Spectrochim Acta B. 2014;94–95:48–57.

    Article  CAS  Google Scholar 

  35. Kumar R, Sharma V. Chemometrics in forensic science. TrAC Trends Anal Chem. 2018;105:191–201.

    Article  CAS  Google Scholar 

  36. Massart DL, Vandeginste BGM, Deming SN, Michotte Y, Kaufmann L. Chemometrics textbook. In: Elsevier; Amsterdam; 1988.

    Google Scholar 

  37. Møller SF, von Frese J, Bro R. Robust methods for multivariate data analysis. J Chemom. 2005;19:549–63.

    Article  CAS  Google Scholar 

  38. Brereton RG. Chemometrics: data analysis for the laboratory and chemical plant. Chichester: Wiley; 2003.

    Book  Google Scholar 

  39. McLachlan G. Discriminant analysis and statistChichesterical pattern recognition: Wiley; 2004.

  40. Sharma V, Kumar R. Trends of chemometrics in bloodstain investigations. TrAC Trends Anal Chem. 2018;107:181–95.

    Article  CAS  Google Scholar 

  41. Huberty CJ, Olejnik S. Applied MANOVA and discriminant analysis. 2nd ed. Chichester: Wiley; 2007.

    Google Scholar 

  42. Smalldon KW, Moffat AC. The calculation of discrimination power for a series of correlated attributes. J Forensic Sci Soc. 1973;13:291–5.

    Article  CAS  PubMed  Google Scholar 

  43. Kursula PK. Accuracy, precision and detection limits of SEM-WDS, SEM-EDS and PIXE in the multi elemental analysis of medieval glass. X-Ray Spectrom. 2000;29:111–8.

    Article  Google Scholar 

  44. Gruber RJ, Julien PC, Toner Technology D. Handbook of imaging materials. 2nd ed. New York: Marcel Dekker; 1991.

    Google Scholar 

  45. Ataeefard M, Ghasemi E, Ebadi M. Effect of micro and nano magnetite on printing toner properties. Sci World J. 2014;7:706367.

    Google Scholar 

  46. Birkett KL, Gregory P. Metal complex dyes as charge control agents. Dyes Pigments. 1986;7:341–50.

    Article  CAS  Google Scholar 

  47. Hartus T. Adhesion of electrophotographic toner on paper. Graphic Arts Finland 2001;30:3.

  48. Nienow AW, Ding P, Pacek AW, Abinhava K, Pickard S, Edwards MR. A process for the manufacture of chemically produced toner (CPT). II. Effect of operating conditions. Ind Eng Chem Res. 2005;44:6012–21.

    Article  CAS  Google Scholar 

  49. Ataeefard M. Production of carbon black acrylic composite as an electrophotographic toner using emulsion aggregation method: investigation the effect of agitation rate. Compos Part B. 2014;64:78–83.

    Article  CAS  Google Scholar 

  50. Kim TK. T test as a parametric statistic. Korean J Anesthesiol. 2015;68:540–6.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Sharma V, Bharti A, Kumar R. On the spectroscopic investigation of lipstick stains: forensic trace evidence. Spectrochim Acta A Mol Biomol Spectrosc. 2019;215:48–57.

    Article  CAS  PubMed  Google Scholar 

  52. Anandarajan M, Hill C, Nolan T. Cluster analysis: modeling groups in text. In: Practical text analytics, advances in analytics and data science, vol. 2. Cham: Springer; 2019.

    Chapter  Google Scholar 

  53. Kaiser HF. An index of factorial simplicity. Psychometrika. 1974;39:31–6.

    Article  Google Scholar 

  54. Hair JF, Black WC, Babin BJ, Anderson RE, Tatham RL. Multivariate data analysis. Upper Saddle River: Pearson Prentice Hall; 2006.

    Google Scholar 

  55. Hair JF, Black WC, Babin BJ, Anderson RE. Multivariate data analysis. 7th ed. Upper Saddle River: Prentice Hall; 2010.

    Google Scholar 

Download references

Acknowledgments

The author Neha Verma is very grateful to the DFSS for awarding JRF fellowship (Letter No. Adm-3209).

Funding

This study received grants from the Department of Science and Technology (DST) (Govt. of India) through sanction no. EMR/2016/001103 (SERB) and PURSE-II grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vishal Sharma.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 2.46 mb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Verma, N., Sharma, V., Kumar, R. et al. On the spectroscopic examination of printed documents by using a field emission scanning electron microscope with energy-dispersive X-ray spectroscopy (FE-SEM-EDS) and chemometric methods: application in forensic science. Anal Bioanal Chem 411, 3477–3495 (2019). https://doi.org/10.1007/s00216-019-01824-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-019-01824-z

Keywords

Navigation