Skip to main content
Log in

Picogram per liter quantification of pyrethroid and organophosphate insecticides in surface waters: a result of large enrichment with liquid–liquid extraction and gas chromatography coupled to mass spectrometry using atmospheric pressure chemical ionization

Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Insecticides such as pyrethroids and organophosphates are extensively used globally. Once released into surface water bodies, they can pose a major threat to aquatic ecosystems already at trace concentrations. Therefore, selected pyrethroids and organophosphates are listed as priority substances within the European Water Framework Directive with chronic quality criteria in the picogram per liter range. Previously applied analytical methods were unable to detect pyrethroids and organophosphates at ecotoxicological relevant concentrations, thereby hindering the assessment of surface water quality. In this work, we developed an ultra-sensitive method for the analysis of 12 pyrethroid and two organophosphate insecticides in surface waters. This method is based on the liquid–liquid extraction of surface water samples with n-hexane to achieve large enrichment factors (4000×) and subsequent chemical analysis by gas chromatography coupled to tandem mass spectrometry using atmospheric pressure chemical ionization, a soft ionization technique. Quality control parameters including the method limits of quantification (12.5–125 pg L−1), intra-day precision (1–22%), intra-day accuracy (84–133%), and absolute recoveries covering liquid–liquid extraction (67–114%) showed that the method is sensitive and robust and therefore suitable for the analysis of pyrethroids and organophosphates in surface waters. The developed method was applied to Swiss surface water samples and detected pyrethroids and organophosphates below the ecotoxicological relevant concentrations, exemplifying the suitability of the proposed method for aquatic monitoring.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

References

  1. Schulz R. Field studies on exposure, effects, and risk mitigation of aquatic nonpoint-source insecticide pollution: a review. J Environ Qual. 2004;33(2):419–48. https://doi.org/10.2134/jeq2004.0419.

    Article  CAS  PubMed  Google Scholar 

  2. Stehle S, Schulz R. Agricultural insecticides threaten surface waters at the global scale. Proc Natl Acad Sci U S A. 2015;112(18):5750–5. https://doi.org/10.1073/pnas.1500232112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Werner I, Moran K. Effects of pyrethroid insecticides on aquatic organisms. In: Gan J, Spurlock F, Hendley P, Weston DP, editors. Synthetic Pyrethroids: occurrence and behavior in aquatic environments. ACS symposium series. 2008. p. 310–34.

  4. Coats JR, Symonik DM, Bradbury SP, Dyer SD, Timson LK, Atchison GJ. Toxicology of synthetic pyrethroids in aquatic organisms: an overview. Environ Toxicol Chem. 1989;8(8):671–9. https://doi.org/10.1002/etc.5620080805.

    Article  CAS  Google Scholar 

  5. Vanwijngaarden R, Leeuwangh P, Lucassen WGH, Romijn K, Ronday R, Vandervelde R, et al. Acute toxicity of chlorpyrifos to fish, a newt, and aquatic invertebrates. Bull Environ Contam Toxicol. 1993;51(5):716–23. https://doi.org/10.1007/bf00201650.

    Article  CAS  Google Scholar 

  6. Ali I, Gupta VK, Aboul-Enein HY. Chirality: a challenge for the environmental scientists. Curr Sci. 2003;84(2):152–6.

    CAS  Google Scholar 

  7. Perez-Fernandez V, Angeles Garcia M, Luisa Marina M. Characteristics and enantiomeric analysis of chiral pyrethroids. J Chromatogr A. 2010;1217(7):968–89. https://doi.org/10.1016/j.chroma.2009.10.069.

    Article  CAS  PubMed  Google Scholar 

  8. Liu WP, Gan JJ, Lee SJ, Werner I. Isomer selectivity in aquatic toxicity and biodegradation of cypermethrin. J Agric Food Chem. 2004;52(20):6233–8. https://doi.org/10.1021/jf0490910.

    Article  CAS  PubMed  Google Scholar 

  9. Liu WP, Gan JJ, Qin S. Separation and aquatic toxicity of enantiomers of synthetic pyrethroid insecticides. Chirality. 2005;17:S127–S33. https://doi.org/10.1002/chir.20122.

  10. Spurlock F, Lee M. Synthetic pyrethroid use patterns, properties, and environmental effects. In: Gan J, Spurlock F, Hendley P, Weston DP, editors. Synthetic pyrethroids. Acs Symposium Series. 2008. p. 3–25.

  11. European Commission. Common implementation strategy for the Water Framework Directive (2000/60/EC). 2011.

  12. Swiss Center for Applied Ecotoxicology. Proposals for acute and chronic quality standards. http://www.ecotoxcentre.ch/expert-service/quality-standards/proposals-for-acute-and-chronic-quality-standards/. Last accessed November 2018.

  13. IUPAC. International Union of Pure and Applied Chemistry. Pesticide properties database. http://sitem.herts.ac.uk/aeru/iupac/. Accessed June 2018.

  14. Laskowski DA. Physical and chemical properties of pyrethroids. Rev Environ Contam Toxicol. 2002;174:49–170.

    Article  CAS  PubMed  Google Scholar 

  15. Liu WP, Gan JJ, Lee S, Kabashima JN. Phase distribution of synthetic pyrethroids in runoff and stream water. Environ Toxicol Chem. 2004;23(1):7–11. https://doi.org/10.1897/03-183.

    Article  PubMed  Google Scholar 

  16. Feo ML, Eljarrat E, Barcelo D. Determination of pyrethroid insecticides in environmental samples. Trac-Trends Anal Chem. 2010;29(7):692–705. https://doi.org/10.1016/j.trac.2010.03.011.

    Article  CAS  Google Scholar 

  17. Albaseer SS, Rao RN, Swamy YV, Mukkanti K. An overview of sample preparation and extraction of synthetic pyrethroids from water, sediment and soil. J Chromatogr A. 2010;1217(35):5537–54. https://doi.org/10.1016/j.chroma.2010.06.058.

    Article  CAS  PubMed  Google Scholar 

  18. Gil-Garcia MD, Barranco-Martinez D, Martinez-Galera M, Parrilla-Vazquez P. Simple, rapid solid-phase extraction procedure for the determination of ultra-trace levels of pyrethroids in ground and sea water by liquid chromatography/electrospray ionization mass spectroscopy. Rapid Commun Mass Spectrom. 2006;20(16):2395–403. https://doi.org/10.1002/rcm.2600.

    Article  CAS  PubMed  Google Scholar 

  19. Ccanccapa-Cartagena A, Masia A, Pico Y. Simultaneous determination of pyrethroids and pyrethrins by dispersive liquid-liquid microextraction and liquid chromatography triple quadrupole mass spectrometry in environmental samples. Anal Bioanal Chem. 2017;409(20):4787–99. https://doi.org/10.1007/s00216-017-0422-7.

    Article  CAS  PubMed  Google Scholar 

  20. Kutter JP, Class TJ. Diastereoselective and enantioselective chromatography of the pyrethroid insecticides allethrin and cypermethrin. Chromatographia. 1992;33(3–4):103–12. https://doi.org/10.1007/bf02275888.

    Article  CAS  Google Scholar 

  21. Feo ML, Eljarrat E, Barcelo D. A rapid and sensitive analytical method for the determination of 14 pyrethroids in water samples. J Chromatogr A. 2010;1217(15):2248–53. https://doi.org/10.1016/j.chroma.2010.02.018.

    Article  CAS  PubMed  Google Scholar 

  22. Feo ML, Eljarrat E, Barceló D. Performance of gas chromatography/tandem mass spectrometry in the analysis of pyrethroid insecticides in environmental and food samples. Rapid Commun Mass Spectrom. 2011;25(7):869–76. https://doi.org/10.1002/rcm.4936.

    Article  CAS  PubMed  Google Scholar 

  23. Portoles T, Mol JGJ, Sancho JV, Hernandez F. Advantages of atmospheric pressure chemical ionization in gas chromatography tandem mass spectrometry: pyrethroid insecticides as a case study. Anal Chem. 2012;84(22):9802–10. https://doi.org/10.1021/ac301699c.

    Article  CAS  PubMed  Google Scholar 

  24. Pintado-Herrera MG, Gonzalez-Mazo E, Lara-Martin PA. Atmospheric pressure gas chromatography-time-of-flight-mass spectrometry (APGC-ToF-MS) for the determination of regulated and emerging contaminants in aqueous samples after stir bar sorptive extraction (SBSE). Anal Chim Acta. 2014;851:1–13. https://doi.org/10.1016/j.aca.2014.05.030.

    Article  CAS  PubMed  Google Scholar 

  25. Mekebri A, Crane DB, Blondina GJ, Oros DR, Rocca JL. Extraction and analysis methods for the determination of pyrethroid insecticides in surface water, sediments and biological tissues at environmentally relevant concentrations. Bull Environ Contam Toxicol. 2008;80(5):455–60. https://doi.org/10.1007/s00128-008-9382-0.

    Article  CAS  PubMed  Google Scholar 

  26. Deanovic LA, Stillway M, Hammock BG, Fong S, Werner I. Tracking pyrethroid toxicity in surface water samples: exposure dynamics and toxicity identification tools for laboratory tests with Hyalella azteca (Amphipoda). Environ Toxicol Chem. 2018;37(2):462–72. https://doi.org/10.1002/etc.3979.

    Article  CAS  PubMed  Google Scholar 

  27. Wang D, Weston DP, Lydy MJ. Method development for the analysis of organophosphate and pyrethroid insecticides at low parts per trillion levels in water. Talanta. 2009;78(4–5):1345–51. https://doi.org/10.1016/j.talanta.2009.02.012.

    Article  CAS  PubMed  Google Scholar 

  28. Serôdio P, Nogueira JMF. Development of a stir-bar-sorptive extraction–liquid desorption–large-volume injection capillary gas chromatographic–mass spectrometric method for pyrethroid pesticides in water samples. Anal Bioanal Chem. 2005;382(4):1141–51. https://doi.org/10.1007/s00216-005-3210-8.

    Article  CAS  PubMed  Google Scholar 

  29. Moschet C, Vermeirssen ELM, Seiz R, Pfefferli H, Hollender J. Picogram per liter detections of pyrethroids and organophosphates in surface waters using passive sampling. Water Res. 2014;66:411–22. https://doi.org/10.1016/j.watres.2014.08.032.

    Article  CAS  PubMed  Google Scholar 

  30. Strahler AN. Hypsometric (area-altitude) analysis of erosional topography. Geol Soc Am Bull. 1952;63(11):1117–32. https://doi.org/10.1130/0016-7606(1952)63[1117:haaoet]2.0.co;2.

  31. 2002/657/EC. Commission Decision of 12 August 2002 implementing Council Directive 96/23/EC concerning the performance of analytical methods and the interpretation of results (Text with EEA relevance) (notified under document number C(2002) 3044). 2002.

  32. Spycher S, Mangold S, Doppler T, Junghans M, Wittmer I, Stamm C, et al. Pesticide risks in small streams-how to get as close as possible to the stress imposed on aquatic organisms. Environ Sci Technol. 2018. https://doi.org/10.1021/acs.est.8b00077.

  33. Hladik ML, Kuivila KM. Assessing the occurrence and distribution of pyrethroids in water and suspended sediments. J Agric Food Chem. 2009;57(19):9079–85. https://doi.org/10.1021/jf9020448.

    Article  CAS  PubMed  Google Scholar 

  34. Liu WP, Gan JJ. Separation and analysis of diastereomers and enantiomers of cypermethrin and cyfluthrin by gas chromatography. J Agric Food Chem. 2004;52(4):755–61. https://doi.org/10.1021/jf035179m.

    Article  CAS  PubMed  Google Scholar 

  35. You J, Lydy MJ. A solution for isomerization of pyrethroid insecticides in gas chromatography. J Chromatogr A. 2007;1166(1–2):181–90. https://doi.org/10.1016/j.chroma.2007.08.014.

    Article  CAS  PubMed  Google Scholar 

  36. Nillos MG, Qin S, Larive C, Schlenk D, Gan J. Epimerization of cypermethrin stereoisomers in alcohols. J Agric Food Chem. 2009;57(15):6938–43. https://doi.org/10.1021/jf900921g.

    Article  CAS  PubMed  Google Scholar 

  37. Qin SJ, Gan JY. Abiotic enantiomerization of permethrin and cypermethrin: effects of organic solvents. J Agric Food Chem. 2007;55(14):5734–9. https://doi.org/10.1021/jf0708894.

    Article  CAS  PubMed  Google Scholar 

  38. Liu WP, Qin SJ, Gan JY. Chiral stability of synthetic pyrethrold insecticides. J Agric Food Chem. 2005;53(10):3814–20. https://doi.org/10.1021/jf048425i.

    Article  CAS  PubMed  Google Scholar 

  39. Perschke H, Hussain M. Chemical isomerization of deltamethrin in alcohols. J Agric Food Chem. 1992;40(4):686–90. https://doi.org/10.1021/jf00016a033.

    Article  CAS  Google Scholar 

  40. Leicht W, Fuchs R, Londershausen M. Stability and biological activity of cyfluthrin isomers. Pestic Sci. 1996;48(4):325–32.

    Article  CAS  Google Scholar 

  41. Smit CE. RIVM: indicatieve normen bestrijdingsmiddelen 2014.

  42. Directive 98/8/EC. Concerning the placing of biocidal products on the market, Inclusion of active substances in Annex I or IA to Directive 98/8/EC, Assessment Report, Etofenprox. 2007.

  43. INERIS. Normes de Qualité Environnementale, Bifenthrin - N° CAS 82657-04-3, DRC-11-118981-13678A 2011.

  44. van Vlaardingen PLA, Vonk JW, de Jong FMW. Environmental risk limits for esfenvalerate: RIVM Letter report 601716017/2008 2008.

  45. de Knecht JA, van Herwijnen R. Environmental risk limits for deltamethrin: RIVM Letter report 601716015/2008 2008.

  46. Loos R, Marinov D, Sanseverino I, Napierska D, Lettieri T. Review of the 1st Watch List under the Water Framework Directive and recommendations for the 2nd Watch List, EUR 29173 EN, Publications Office of the European Union, Luxembourg, ISBN 978-92-79-81839-4, doi:10.2760/614367, JRC1111982018. 2018.

  47. U.S. Environmental Protection Agency. Chemistry Dashboard. https://comptox.epa.gov/dashboard. Accessed May 2018.

  48. MarvinSketch v14.10.20.0 from ChemAxon. Available at https://www.chemaxon.com/products/marvin/marvinsketch/. Accessed May 2018.

  49. Lee S, Gan JY, Kabashima J. Recovery of synthetic pyrethroids in water samples during storage and extraction. J Agric Food Chem. 2002;50(25):7194–8. https://doi.org/10.1021/jf0258353.

    Article  CAS  PubMed  Google Scholar 

  50. Massei R, Busch W, Wolschke H, Schinkel L, Bitsch M, Schulze T, et al. Screening of pesticide and biocide patterns as risk drivers in sediments of major European river mouths: ubiquitous or river basin-specific contamination? Environ Sci Technol. 2018;52(4):2251–60. https://doi.org/10.1021/acs.est.7b04355.

    Article  CAS  PubMed  Google Scholar 

  51. Moschet C, Wittmer I, Stamm C, Singer H, Hollender J. Insektizide und Fungizide in Fliessgewässern. Wichtig zur Beurteilung der Gewässerqualität. Aqua Gas. 2015;95(4):54–65.

    Google Scholar 

Download references

Acknowledgments

We give special thanks to the cantonal authority for sampling and valuable discussion. Furthermore, we thank the platform for water quality of the Swiss Water Association (VSA) (especially Tobias Doppler, Silwan Daouk and Irene Wittmer) for the fruitful cooperation and the Swiss Center for Applied Ecotoxicology (especially Marion Junghans and Muris Korkaric) for the derivation and the appropriation of EQSs. Finally, we acknowledge Cresten Mansfeld (Eawag) for proof-reading the manuscript and the two anonymous reviewers whose suggestions helped improve and clarify the manuscript.

Funding

This study was funded by the Swiss Federal Office for the Environment (FOEN).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heinz Singer.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 841 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rösch, A., Beck, B., Hollender, J. et al. Picogram per liter quantification of pyrethroid and organophosphate insecticides in surface waters: a result of large enrichment with liquid–liquid extraction and gas chromatography coupled to mass spectrometry using atmospheric pressure chemical ionization. Anal Bioanal Chem 411, 3151–3164 (2019). https://doi.org/10.1007/s00216-019-01787-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-019-01787-1

Keywords

Navigation