Analytical and Bioanalytical Chemistry

, Volume 411, Issue 14, pp 3165–3177 | Cite as

A micro-Raman and chemometric study of urinary tract infection-causing bacterial pathogens in mixed cultures

  • Yogesha M
  • Kiran Chawla
  • Aseefhali Bankapur
  • Mahendra Acharya
  • Jacinta S. D’Souza
  • Santhosh ChidangilEmail author
Research Paper


Detection of urinary tract infection (UTI)-causing bacteria uses conventional time-consuming microbiological techniques. The current need is to use a fast and reliable method of bacterial identification. In order to unambiguously distinguish the UTI-causing five bacterial species used in the current study, micro-Raman spectra were obtained from a home-assembled micro-Raman system and analyzed by multivariate statistical techniques such as principal component analysis (PCA), partial least square-discriminate analysis (PLS-DA), and support vector machine (SVM). Also, the micro-Raman spectra recorded from samples containing two and three bacterial species were tested and validated against the aforementioned calibration models using PLS-DA and SVM. The prediction accuracies of up to 73 and 89% were achieved with PLS-DA and SVM, respectively. Taken together, the present study depicts the capturing of unique micro-Raman spectral features manifesting from the biochemical content of each bacterium. Also, micro-Raman spectroscopy combined with multivariate data analysis can therefore be a reliable and faster technique for the diagnosis of UTI-causing bacteria.

Graphical Abstract


Micro-Raman spectroscopy UTI-causing bacteria Multivariate classification PCA PLS-DA SVM 



Principal component analysis


Partial least square-discriminate analysis


Support vector machine


Urinary tract infection



The authors are thankful to the Department of Biotechnology, Govt. of India, and one of the authors is thankful to Vision Group of Science and Technology (VGST), Govt. of Karnataka for establishing the Centre for Excellence in Biophotonics and Dr. TMA Pai Endowment Chair fellowship, Manipal Academy of Higher Education, Manipal.


This study was supported by the Department of Biotechnology, Govt. of India for the micro-Raman facility through the sanctioned projects (BT/PR6413/MED/14/80/2005 and BT/PR3159/BRB/10/960/2011), Vision Group of Science and Technology (VGST), Govt. of Karnataka, and Dr. TMA Pai Endowment Chair fellowship, Manipal Academy of Higher Education, Manipal.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Research involving human participants and/or animals

There was no direct involvement of human participants. All individual participants had given informed written consent for the present study. The experiments were carried in accordance with approved ethical guidelines of the Institutional Ethics Committee, Kasturba Medical College and Kasturba Hospital, Manipal.

Supplementary material

216_2019_1784_MOESM1_ESM.pdf (668 kb)
ESM 1 (PDF 668 kb)


  1. 1.
    Foxman B. Epidemiology of urinary tract infections: incidence, morbidity, and economic costs. Am J Med. 2002;113(1):5–13.CrossRefGoogle Scholar
  2. 2.
    Burt CW, Schappert SM. Ambulatory care visits to physician offices, hospital outpatient departments, and emergency departments: United States, 1999–2000. Vital and health statistics series 13. Data Natl Health Surv. 2004;(157):1–70.Google Scholar
  3. 3.
    Stamm WE, Norrby SR. Urinary tract infections: disease panorama and challenges. J Infect Dis. 2001;183(Supplement 1):S1–4.CrossRefGoogle Scholar
  4. 4.
    Gales AC, Sader HS, Jones RN, Group TSP. Urinary tract infection trends in Latin American hospitals: report from the SENTRY antimicrobial surveillance program (1997–2000). Diagn Microbiol Infect Dis. 2002;44(3):289–99.CrossRefGoogle Scholar
  5. 5.
    Alemu A, Moges F, Shiferaw Y, Tafess K, Kassu A, Anagaw B, et al. Bacterial profile and drug susceptibility pattern of urinary tract infection in pregnant women at University of Gondar Teaching Hospital, Northwest Ethiopia. BMC Res Notes. 2012;5(1):1.CrossRefGoogle Scholar
  6. 6.
    Chenoweth CE, Gould CV, Saint S. Diagnosis, management, and prevention of catheter-associated urinary tract infections. Infect Dis Clin N Am. 2014;28(1):105–19.CrossRefGoogle Scholar
  7. 7.
    Foxman B. Urinary tract infection syndromes: occurrence, recurrence, bacteriology, risk factors, and disease burden. Infect Dis Clin North Am. 2014;28(1):1–13.CrossRefGoogle Scholar
  8. 8.
    Stamm WE, Hooton TM. Management of urinary tract infections in adults. New Engl J Med. 1993;329(18):1328–34.CrossRefGoogle Scholar
  9. 9.
    Sheerin NS. Urinary tract infection. Medicine. 2011;39(7):384–9.CrossRefGoogle Scholar
  10. 10.
    Morgan M, McKenzie H. Controversies in the laboratory diagnosis of community-acquired urinary tract infection. Eur J Clin Microbiol Infect Dis. 1993;12(7):491–504.CrossRefGoogle Scholar
  11. 11.
    Kastanos E, Kyriakides A, Pitris C, Hadjigeorgiou K. Identification and antibiotic sensitivity of UTI pathogens using Raman spectroscopy. INTECH Open Access Publisher; 2011.Google Scholar
  12. 12.
    Alanis AJ. Resistance to antibiotics: are we in the post-antibiotic era? Arch Med Res. 2005;36(6):697–705.CrossRefGoogle Scholar
  13. 13.
    Magee J. Whole-organism fingerprinting. In: Handbook of new bacterial systematics. 1993. p. 383–427.Google Scholar
  14. 14.
    Xie C, Li Y-q. Confocal micro-Raman spectroscopy of single biological cells using optical trapping and shifted excitation difference techniques. J Appl Phys. 2003;93(5):2982–6.CrossRefGoogle Scholar
  15. 15.
    Sengupta A, Mujacic M, Davis EJ. Detection of bacteria by surface-enhanced Raman spectroscopy. Anal Bioanal Chem. 2006;386(5):1379–86.CrossRefGoogle Scholar
  16. 16.
    Maquelin K, Choo-Smith L-P, van Vreeswijk T, Endtz HP, Smith B, Bennett R, et al. Raman spectroscopic method for identification of clinically relevant microorganisms growing on solid culture medium. Anal Chem. 2000;72(1):12–9.CrossRefGoogle Scholar
  17. 17.
    Schuster KC, Reese I, Urlaub E, Gapes JR, Lendl B. Multidimensional information on the chemical composition of single bacterial cells by confocal Raman microspectroscopy. Anal Chem. 2000;72(22):5529–34.CrossRefGoogle Scholar
  18. 18.
    Stöckel S, Schumacher W, Meisel S, Elschner M, Rösch P, Popp J. Raman spectroscopy-compatible inactivation method for pathogenic endospores. Appl Environ Microbiol. 2010;76(9):2895–907.CrossRefGoogle Scholar
  19. 19.
    Harz M, Rösch P, Peschke K-D, Ronneberger O, Burkhardt H, Popp J. Micro-Raman spectroscopic identification of bacterial cells of the genus Staphylococcus and dependence on their cultivation conditions. Analyst. 2005;130(11):1543–50.CrossRefGoogle Scholar
  20. 20.
    Schmid U, Roesch P, Krause M, Harz M, Popp J, Baumann K. Gaussian mixture discriminant analysis for the single-cell differentiation of bacteria using micro-Raman spectroscopy. Chemom Intell Lab Syst. 2009;96(2):159–71.CrossRefGoogle Scholar
  21. 21.
    Esbensen KH, Guyot D, Westad F, Houmoller LP. Multivariate data analysis: in practice: an introduction to multivariate data analysis and experimental design. Multivariate data analysis; 2002.Google Scholar
  22. 22.
    Jarvis RM, Goodacre R. Ultra-violet resonance Raman spectroscopy for the rapid discrimination of urinary tract infection bacteria. FEMS Microbiol Lett. 2004;232(2):127–32.CrossRefGoogle Scholar
  23. 23.
    Jarvis RM, Goodacre R. Discrimination of bacteria using surface-enhanced Raman spectroscopy. Anal Chem. 2004;76(1):40–7.CrossRefGoogle Scholar
  24. 24.
    Avci E, Kaya NS, Ucankus G, Culha M. Discrimination of urinary tract infection pathogens by means of their growth profiles using surface enhanced Raman scattering. Anal Bioanal Chem. 2015;407(27):8233–41.CrossRefGoogle Scholar
  25. 25.
    Kastanos EK, Kyriakides A, Hadjigeorgiou K, Pitris C. A novel method for urinary tract infection diagnosis and antibiogram using Raman spectroscopy. J Raman Spectrosc. 2010;41(9):958–63. Scholar
  26. 26.
    Hadjigeorgiou K, Kastanos E, Pitris C, editors. Surface enhanced Raman spectroscopy as a tool for rapid and inexpensive diagnosis and antibiotic susceptibility testing for urinary tract infections. In: Healthcare Innovation Point-Of-Care Technologies Conference (HI-POCT), 2016. IEEE; 2016.Google Scholar
  27. 27.
    Premasiri W, Chen Y, Williamson P, Bandarage D, Pyles C, Ziegler L. Rapid urinary tract infection diagnostics by surface-enhanced Raman spectroscopy (SERS): identification and antibiotic susceptibilities. Anal Bioanal Chem. 2017;1–12.Google Scholar
  28. 28.
    Jenkins CA, Lewis PD, Dunstan PR, Harris DA. Role of Raman spectroscopy and surface enhanced Raman spectroscopy in colorectal cancer. World J Gastrointest Oncol. 2016;8(5):427.CrossRefGoogle Scholar
  29. 29.
    Wilson ML, Gaido L. Laboratory diagnosis of urinary tract infections in adult patients. Clin Infect Dis. 2004;38(8):1150–8.CrossRefGoogle Scholar
  30. 30.
    Cam D, Keseroglu K, Kahraman M, Sahin F, Culha M. Multiplex identification of bacteria in bacterial mixtures with surface-enhanced Raman scattering. J Raman Spectrosc. 2010;41(5):484–9.CrossRefGoogle Scholar
  31. 31.
    Bankapur A, Zachariah E, Chidangil S, Valiathan M, Mathur D. Raman tweezers spectroscopy of live, single red and white blood cells. PLoS One. 2010;5(4):e10427.CrossRefGoogle Scholar
  32. 32.
    Barkur S, Bankapur A, Pradhan M, Chidangil S, Mathur D, Ladiwala U. Probing differentiation in cancer cell lines by single-cell micro-Raman spectroscopy. J Biomed Opt. 2015;20(8):085001.CrossRefGoogle Scholar
  33. 33.
    Eilers PH. A perfect smoother. Anal Chem. 2003;75(14):3631–6.CrossRefGoogle Scholar
  34. 34.
    De Gelder J, De Gussem K, Vandenabeele P, Moens L. Reference database of Raman spectra of biological molecules. J Raman Spectrosc. 2007;38(9):1133–47.CrossRefGoogle Scholar
  35. 35.
    De Gelder J, De Gussem K, Vandenabeele P, Vancanneyt M, De Vos P, Moens L. Methods for extracting biochemical information from bacterial Raman spectra: focus on a group of structurally similar biomolecules—fatty acids. Anal Chim Acta. 2007;603(2):167–75.CrossRefGoogle Scholar
  36. 36.
    Schulz H, Baranska M. Identification and quantification of valuable plant substances by IR and Raman spectroscopy. Vib Spectrosc. 2007;43(1):13–25.CrossRefGoogle Scholar
  37. 37.
    Goeller LJ, Riley MR. Discrimination of bacteria and bacteriophages by Raman spectroscopy and surface-enhanced Raman spectroscopy. Appl Spectrosc. 2007;61(7):679–85.CrossRefGoogle Scholar
  38. 38.
    Laucks ML, Sengupta A, Junge K, Davis EJ, Swanson BD. Comparison of psychro-active arctic marine bacteria and common mesophillic bacteria using surface-enhanced Raman spectroscopy. Appl Spectrosc. 2005;59(10):1222–8.CrossRefGoogle Scholar
  39. 39.
    Sandt C, Smith-Palmer T, Pink J, Pink D. A confocal Raman microscopy study of the distribution of a carotene-containing yeast in a living Pseudomonas aeruginosa biofilm. Appl Spectrosc. 2008;62(9):975–83.CrossRefGoogle Scholar
  40. 40.
    Schulz H, Baranska M, Baranski R. Potential of NIR-FT-Raman spectroscopy in natural carotenoid analysis. Biopolymers. 2005;77(4):212–21.CrossRefGoogle Scholar
  41. 41.
    Notingher I, Selvakumaran J, Hench LL. New detection system for toxic agents based on continuous spectroscopic monitoring of living cells. Biosens Bioelectron. 2004;20(4):780–9.CrossRefGoogle Scholar
  42. 42.
    Neugebauer U, Schmid U, Baumann K, Ziebuhr W, Kozitskaya S, Deckert V, et al. Towards a detailed understanding of bacterial metabolism—spectroscopic characterization of Staphylococcus epidermidis. Chemphyschem. 2007;8(1):124–37.CrossRefGoogle Scholar
  43. 43.
    Wu Q, Hamilton T, Nelson WH, Elliott S, Sperry JF, Wu M. UV Raman spectral intensities of E. coli and other bacteria excited at 228.9, 244.0, and 248.2 nm. Anal Chem. 2001;73(14):3432–40.CrossRefGoogle Scholar
  44. 44.
    Liu GY, Essex A, Buchanan JT, Datta V, Hoffman HM, Bastian JF, et al. Staphylococcus aureus golden pigment impairs neutrophil killing and promotes virulence through its antioxidant activity. J Exp Med. 2005;202(2):209–15.CrossRefGoogle Scholar
  45. 45.
    Nwodo UU, Green E, Okoh AI. Bacterial exopolysaccharides: functionality and prospects. Int J Mol Sci. 2012;13(11):14002–15.CrossRefGoogle Scholar
  46. 46.
    Brown L, Wolf JM, Prados-Rosales R, Casadevall A. Through the wall: extracellular vesicles in Gram-positive bacteria, mycobacteria and fungi. Nat Rev Microbiol. 2015;13(10):620–30.CrossRefGoogle Scholar
  47. 47.
    Highsmith AK, Jarvis WR. Klebsiella pneumoniae: selected virulence factors that contribute to pathogenicity. Infect Control. 1985;6(02):75–7.CrossRefGoogle Scholar
  48. 48.
    Malinowski ER. Factor analysis in chemistry, 3 edn. Wiley; 2002.Google Scholar
  49. 49.
    Martens HN, Naes T. Multivariate calibration. Chichester: Wiley; 1989.Google Scholar
  50. 50.
    Siegman-Igra Y. The significance of urine culture with mixed flora. Curr Opin Nephrol Hypertens. 1994;3(6):656–9.CrossRefGoogle Scholar
  51. 51.
    Bajpai T, Pandey M, Varma M, Bhatambare GS. Mixed flora in the urine of hospitalized and elderly patients: contamination or true infection? Nigerian Journal of Experimental and Clinical Biosciences. 2014;2(1):20.CrossRefGoogle Scholar
  52. 52.
    Kloß S, Kampe B, Sachse S, Rösch P, Straube E, Pfister W, et al. Culture independent Raman spectroscopic identification of urinary tract infection pathogens: a proof of principle study. Anal Chem. 2013;85(20):9610–6.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Yogesha M
    • 1
  • Kiran Chawla
    • 2
  • Aseefhali Bankapur
    • 1
  • Mahendra Acharya
    • 1
  • Jacinta S. D’Souza
    • 3
  • Santhosh Chidangil
    • 1
    Email author
  1. 1.Centre for Biophotonics, Department of Atomic and Molecular PhysicsManipal Academy of Higher EducationManipalIndia
  2. 2.Department of Microbiology, Kasturba Medical CollegeManipal Academy of Higher EducationManipalIndia
  3. 3.UM-DAE Centre for Excellence in Basic Sciences, School of Biological SciencesUniversity of MumbaiMumbaiIndia

Personalised recommendations