Analytical and Bioanalytical Chemistry

, Volume 411, Issue 12, pp 2475–2479 | Cite as

The 2018 Nobel Prize in Chemistry: phage display of peptides and antibodies

  • Rodrigo BarderasEmail author
  • Elena Benito-PeñaEmail author
Feature Article


One-half of the 2018 Nobel Prize in Chemistry was awarded jointly to George P. Smith and Sir Gregory P. Winter “for the phage display of peptides and antibodies”. This feature article summarizes significant achievements leading to the development of phage display of peptides and antibodies, where a bacteriophage is genetically modified to display peptides and proteins, with the primary aim of producing new biopharmaceuticals. These significant achievements are proven to be useful for the development of phage-based bioassays and biosensors.


Nobel Prize 2018 Phage display of peptides and proteins Biopharmaceuticals Therapeutic antibodies 


Funding information

R.B. and E. B-P. acknowledge financial support from the PI17CIII/00045 grant from the AES-ISCIII program and the CTQ2015-69278-C2-1-R/AIE grant from the Ministry of Economy and Competitiveness (MINECO), respectively.

Compliance with ethical standards

The authors declare that there are no conflicts of interest regarding this manuscript.


  1. 1.
    Mann NH. The third age of phage. PLoS Biol. 2005;3:e182.CrossRefGoogle Scholar
  2. 2.
    Matsuzaki S, Uchiyama J, Takemura-Uchiyama I, Daibata M. Perspective: the age of the phage. Nature. 2014;509:S9.CrossRefGoogle Scholar
  3. 3.
    Lee YJ, Yi H, Kim WJ, Kang K, Yun DS, Strano MS, et al. Fabricating genetically engineered high-power lithium-ion batteries using multiple virus genes. Science. 2009;324:1051–5.Google Scholar
  4. 4.
    Zhou JC, Soto CM, Chen MS, Bruckman MA, Moore MH, Barry E, et al. Biotemplating rod-like viruses for the synthesis of copper nanorods and nanowires. J Nanobiotechnol. 2012;10:18.CrossRefGoogle Scholar
  5. 5.
    Peltomaa R, Lopez-Perolio I, Benito-Pena E, Barderas R, Moreno-Bondi MC. Application of bacteriophages in sensor development. Anal Bioanal Chem. 2016;408:1805–28.CrossRefGoogle Scholar
  6. 6.
    Petrenko VA. Landscape phage as a molecular recognition interface for detection devices. Microelectron J. 2008;39:202–7.CrossRefGoogle Scholar
  7. 7.
    Pasqualini R, Arap W. Hybridoma-free generation of monoclonal antibodies. Proc Natl Acad Sci U S A. 2004;101:257–9.CrossRefGoogle Scholar
  8. 8.
    Smith GP, Petrenko VA. Phage display. Chem Rev. 1997;97:391–410.CrossRefGoogle Scholar
  9. 9.
    Barbas CFI, Burton DR, Scott JK, Silverman GJ. Phage display: a laboratory manual. Cold Spring Harbor Laboratory Press; 2001. p. 1–736.Google Scholar
  10. 10.
    Lee JW, Song J, Hwang MP, Lee KH. Nanoscale bacteriophage biosensors beyond phage display. Int J Nanomedicine. 2013;8:3917–25.CrossRefGoogle Scholar
  11. 11.
    Smith GP. Filamentous fusion phage: novel expression vectors that display cloned antigens on the virion surface. Science. 1985;228:1315–7.CrossRefGoogle Scholar
  12. 12.
    Parmley SF, Smith GP. Antibody-selectable filamentous fd phage vectors: affinity purification of target genes. Gene. 1988;73:305–18.CrossRefGoogle Scholar
  13. 13.
    Scott JK, Smith GP. Searching for peptide ligands with an epitope library. Science. 1990;249:386–90.CrossRefGoogle Scholar
  14. 14.
    Devlin JJ, Panganiban LC, Devlin PE. Random peptide libraries: a source of specific protein binding molecules. Science. 1990;249:404–6.CrossRefGoogle Scholar
  15. 15.
    Winter G, Griffiths AD, Hawkins RE, Hoogenboom HR. Making antibodies by phage display technology. Annu Rev Immunol. 1994;12:433–55.CrossRefGoogle Scholar
  16. 16.
    Hoogenboom HR, Griffiths AD, Johnson KS, Chiswell DJ, Hudson P, Winter G. Multi-subunit proteins on the surface of filamentous phage: methodologies for displaying antibody (Fab) heavy and light chains. Nucleic Acids Res. 1991;19:4133–7.CrossRefGoogle Scholar
  17. 17.
    McCafferty J, Griffiths AD, Winter G, Chiswell DJ. Phage antibodies: filamentous phage displaying antibody variable domains. Nature. 1990;348:552–4.CrossRefGoogle Scholar
  18. 18.
    Clackson T, Hoogenboom HR, Griffiths AD, Winter G. Making antibody fragments using phage display libraries. Nature. 1991;352:624–8.CrossRefGoogle Scholar
  19. 19.
    Riechmann L, Clark M, Waldmann H, Winter G. Reshaping human antibodies for therapy. Nature. 1988;332:323–7.CrossRefGoogle Scholar
  20. 20.
    Marks JD, Hoogenboom HR, Bonnert TP, McCafferty J, Griffiths AD, Winter G. By-passing immunization. Human antibodies from V-gene libraries displayed on phage. J Mol Biol. 1991;222:581–97.CrossRefGoogle Scholar
  21. 21.
    Huse WD, Sastry L, Iverson SA, Kang AS, Alting-Mees M, Burton DR, et al. Generation of a large combinatorial library of the immunoglobulin repertoire in phage lambda. Science. 1989;246:1275–81.CrossRefGoogle Scholar
  22. 22.
    Verhoeyen M, Milstein C, Winter G. Reshaping human antibodies: grafting an antilysozyme activity. Science. 1988;239:1534–6.CrossRefGoogle Scholar
  23. 23.
    Hoogenboom HR. Overview of antibody phage-display technology and its applications. Methods Mol Biol. 2002;178:1–37.Google Scholar
  24. 24.
    Kaplon H, Reichert JM. Antibodies to watch in 2019. MAbs. 2018.Google Scholar
  25. 25.
    Weiner LM, Surana R, Wang S. Monoclonal antibodies: versatile platforms for cancer immunotherapy. Nat Rev Immunol. 2010;10:317–27.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Functional Proteomics Unit, UFIEC, Chronic Disease ProgrammeInstituto de Salud Carlos IIIMadridSpain
  2. 2.Departamento de Química Analítica, Facultad de Ciencias QuímicasUniversidad Complutense de MadridMadridSpain

Personalised recommendations