Advertisement

Analytical and Bioanalytical Chemistry

, Volume 411, Issue 12, pp 2729–2741 | Cite as

Population-based analysis of cell-penetrating peptide uptake using a microfluidic droplet trapping array

  • Nora Safa
  • Manibarathi Vaithiyanathan
  • Shayan Sombolestani
  • Seleipiri Charles
  • Adam T. MelvinEmail author
Research Paper
  • 147 Downloads

Abstract

Cell-penetrating peptides (CPPs) have garnered significant attention as a method to introduce reporters and therapeutics into intact cells. While numerous studies have been performed identifying new CPP sequences, relatively little is known about their uptake efficiency at the single-cell level. Here, a droplet microfluidic trapping array was used to characterize CPP uptake across a population of single intact cells. The microfluidic device allowed for facile and rapid isolation and analysis of single-cell fluorescence in a 787-member overhead trapping array with > 99% droplet trapping efficiency. The permeability efficiencies of four different CPPs were studied and compared in HeLa cells. Population analysis was performed using linkage hierarchical cluster analysis by R programming to bin cells into subpopulations expressing very low to very high peptide uptake efficiencies. CPP uptake was observed to be heterogeneous across the population of cells with peptide concentration and sequence both playing important roles in the diversity of CPP uptake, the overall peptide uptake efficiency, and the intracellular homogeneity of peptide distribution. This microfluidic-based analytical approach finds application in personalized medicine and provides new insight in the heterogeneity of CPP uptake which has the potential to affect both biosensor and drug internalization in intact cells.

Graphical abstract

.

Keywords

Peptides High-throughput screening Single-cell analysis Microfluidics 

Notes

Acknowledgments

The authors would like to thank Dr. Nancy Allbritton (University of North Carolina) for providing the GFP-HeLa and OPM-2 cells. The authors would also like to thank Dr. Ted Gauthier (LSU AgCenter Biotechnology Lab) for assistance in the synthesis and purification of the peptides used in this study. The authors would also like to thank Joseph B. Balhoff for assistance in producing the graphical abstract and Riad Elkhanoufi and Wayne Wortmann III for some assistance with device fabrication.

Funding information

This work was supported by grants from the National Institute of Biomedical Imaging and Bioengineering (R03EB02935) and the National Science Foundation (CBET1509713) awarded to ATM.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

216_2019_1713_MOESM1_ESM.pdf (1.8 mb)
ESM 1 (PDF 1823 kb)

References

  1. 1.
    Hamley I. Small bioactive peptides for biomaterials design and therapeutics. Chem Rev. 2017;117(24):14015–41.  https://doi.org/10.1021/acs.chemrev.7b00522.CrossRefGoogle Scholar
  2. 2.
    Craik D, Fairlie D, Liras S, Price D. The future of peptide-based drugs. Chem Biol Drug Des. 2013;81(1):136–47.  https://doi.org/10.1111/cbdd.12055.CrossRefGoogle Scholar
  3. 3.
    Juan G-V, Morris CM. Fluorescent reporters and biosensors for probing the dynamic behavior of protein kinases. Proteomes. 2015;3(4):369–410.CrossRefGoogle Scholar
  4. 4.
    Kovarik M, Allbritton N. Measuring enzyme activity in single cells. Trends Biotechnol. 2011;29(5):222–30.  https://doi.org/10.1016/j.tibtech.2011.01.003.CrossRefGoogle Scholar
  5. 5.
    Di Carlo D, Lee L. Dynamic single-cell analysis for quantitative biology. Anal Chem. 2006;78(23):7918–25.CrossRefGoogle Scholar
  6. 6.
    Cai L, Friedman N, Xie X. Stochastic protein expression in individual cells at the single molecule level. Nature. 2006;440(7082):358–62.  https://doi.org/10.1038/nature04599.CrossRefGoogle Scholar
  7. 7.
    Wang J, Zhan Y, Bao N, Lu C. Quantitative measurement of quantum dot uptake at the cell population level using microfluidic evanescent-wave-based flow cytometry. Lab Chip. 2012;12(8):1441–5.  https://doi.org/10.1039/c2lc21298f.CrossRefGoogle Scholar
  8. 8.
    Murphy T, Zhang Q, Naler L, Ma S, Lu C. Recent advances in the use of microfluidic technologies for single cell analysis. Analyst. 2018;143(1):60–80.  https://doi.org/10.1039/c7an01346a.CrossRefGoogle Scholar
  9. 9.
    Reece A, Xia B, Jiang Z, Noren B, McBride R, Oakey J. Microfluidic techniques for high throughput single cell analysis. Curr Opin Biotechnol. 2016;40:90–6.  https://doi.org/10.1016/j.copbio.2016.02.015.CrossRefGoogle Scholar
  10. 10.
    Wang J, Bao N, Paris L, Wang H, Geahlen R, Lu C. Detection of kinase translocation using microfluidic electroporative flow cytometry. Anal Chem. 2008;80(4):1087–93.  https://doi.org/10.1021/ac702065e.CrossRefGoogle Scholar
  11. 11.
    Shang L, Cheng Y, Zhao Y. Emerging droplet microfluidics. Chem Rev. 2017;117(12):7964–8040.  https://doi.org/10.1021/acs.chemrev.6b00848.CrossRefGoogle Scholar
  12. 12.
    Du G, Fang Q, den Toonder J. Microfluidics for cell-based high throughput screening platforms-a review. Anal Chim Acta. 2016;903:36–50.  https://doi.org/10.1016/j.aca.2015.11.023.CrossRefGoogle Scholar
  13. 13.
    Pekin D, Skhiri Y, Baret J, Le Corre D, Mazutis L, Ben Salem C, et al. Quantitative and sensitive detection of rare mutations using droplet-based microfluidics. Lab Chip. 2011;11(13):2156–66.  https://doi.org/10.1039/c1lc20128j.CrossRefGoogle Scholar
  14. 14.
    Sjostrom S, Joensson H, Svahn H. Multiplex analysis of enzyme kinetics and inhibition by droplet microfluidics using picoinjectors. Lab Chip. 2013;13(9):1754–61.  https://doi.org/10.1039/c3lc41398e.CrossRefGoogle Scholar
  15. 15.
    Jin S, Lee S, Lee B, Jeong S, Peter M, Lee C. Programmable static droplet array for the analysis of cell-cell communication in a confined microenvironment. Anal Chem. 2017;89(18):9722–9.  https://doi.org/10.1021/acs.analchem.7b01462.CrossRefGoogle Scholar
  16. 16.
    Toseland CP. Fluorescent labeling and modification of proteins. J Chem Biol. 2013;6(3):85–95.  https://doi.org/10.1007/s12154-013-0094-5.CrossRefGoogle Scholar
  17. 17.
    Brouzes E, Medkova M, Savenelli N, Marran D, Twardowski M, Hutchison J, et al. Droplet microfluidic technology for single-cell high-throughput screening. Proc Natl Acad Sci U S A. 2009;106(34):14195–200.  https://doi.org/10.1073/pnas.0903542106. CrossRefGoogle Scholar
  18. 18.
    Khorshidi M, Rajeswari P, Wahlby C, Joensson H, Svahn H. Automated analysis of dynamic behavior of single cells in picoliter droplets. Lab Chip. 2014;14(5):931–7.  https://doi.org/10.1039/c3lc51136g.CrossRefGoogle Scholar
  19. 19.
    Jackson-Holmes E, McDevitt T, Lu H. A microfluidic trap array for longitudinal monitoring and multi-modal phenotypic analysis of individual stem cell aggregates. Lab Chip. 2017;17(21):3634–42.  https://doi.org/10.1039/c7lc00763a.CrossRefGoogle Scholar
  20. 20.
    Safa N, Anderson JC, Vaithiyanathan M, Pettigrew JH, Pappas GA, Liu D et al. CPProtectides: rapid uptake of well-folded β-hairpin peptides with enhanced resistance to intracellular degradation. Pept Sci 2018:e24092.Google Scholar
  21. 21.
    Qian Z, LaRochelle J, Jiang B, Lian W, Hard R, Selner N, et al. Early endosomal escape of a cyclic cell-penetrating peptide allows effective cytosolic cargo delivery. Biochemistry. 2014;53(24):4034–46.  https://doi.org/10.1021/bi5004102. CrossRefGoogle Scholar
  22. 22.
    Mazutis L, Gilbert J, Ung W, Weitz D, Griffiths A, Heyman J. Single-cell analysis and sorting using droplet-based microfluidics. Nat Protoc. 2013;8(5):870–91.  https://doi.org/10.1038/nprot.2013.046.CrossRefGoogle Scholar
  23. 23.
    Qian Z, Liu T, Liu Y, Briesewitz R, Barrios A, Jhiang S, et al. Efficient delivery of cyclic peptides into mammalian cells with short sequence motifs. ACS Chem Biol. 2013;8(2):423–31.  https://doi.org/10.1021/cb3005275. CrossRefGoogle Scholar
  24. 24.
    Brock G, Pihur V, Datta S, Datta S. clValid: an R package for cluster validation. J Stat Softw. 2008;25(4):1–22.CrossRefGoogle Scholar
  25. 25.
    Charrad M, Ghazzali N, Bioteau V, Niknafs A. NbClust: an R package for determining the relevant number of clusters in a data set. J Stat Softw. 2014;61(6):1–36.CrossRefGoogle Scholar
  26. 26.
    Collins DJ, Neild A, deMello A, Liu A-Q, Ai Y. The Poisson distribution and beyond: methods for microfluidic droplet production and single cell encapsulation. Lab Chip. 2015;15(17):3439–59.  https://doi.org/10.1039/C5LC00614G.CrossRefGoogle Scholar
  27. 27.
    Handl J, Knowles J, Kell D. Computational cluster validation in post-genomic data analysis. Bioinformatics. 2005;21(15):3201–12.  https://doi.org/10.1093/bioinformatics/bti517.CrossRefGoogle Scholar
  28. 28.
    Dunn C. Well-separated clusters and optimal fuzzy partitions. J Cybern. 1974;4:95–104.CrossRefGoogle Scholar
  29. 29.
    Rousseeuw P. Silhouettes - a graphical aid to the interpretation and validation of cluster-analysis. J Comput Appl Math. 1987;20:53–65.  https://doi.org/10.1016/0377-0427(87)90125-7.CrossRefGoogle Scholar
  30. 30.
    Brunner S, Sauer T, Carotta S, Cotten M, Saltik M, Wagner E. Cell cycle dependence of gene transfer by lipoplex polyplex and recombinant adenovirus. Gene Ther. 2000;7(5):401–7.  https://doi.org/10.1038/sj.gt.3301102.CrossRefGoogle Scholar
  31. 31.
    El-Sayed A, Futaki S, Harashima H. Delivery of macromolecules using arginine-rich cell-penetrating peptides: ways to overcome endosomal entrapment. AAPS J. 2009;11(1):13–22.  https://doi.org/10.1208/s12248-008-9071-2.CrossRefGoogle Scholar
  32. 32.
    Brock R. The uptake of arginine-rich cell-penetrating peptides: putting the puzzle together. Bioconjug Chem. 2014;25(5):863–8.  https://doi.org/10.1021/bc500017t.CrossRefGoogle Scholar
  33. 33.
    Cao Z, Geng S, Li L, Lu C. Detecting intracellular translocation of native proteins quantitatively at the single cell level. Chem Sci. 2014;5(6):2530–5.  https://doi.org/10.1039/c4sc00578c.CrossRefGoogle Scholar
  34. 34.
    Gomez JA, Chen J, Ngo J, Hajkova D, Yeh I-J, Gama V, et al. Cell-penetrating penta-peptides (CPP5s): measurement of cell entry and protein-transduction activity. pharmaceuticals. 2010;3:3594–613.CrossRefGoogle Scholar
  35. 35.
    Duchardt F, Fotin-Mleczek M, Schwarz H, Fischer R, Brock R. A comprehensive model for the cellular uptake of cationic cell-penetrating peptides. Traffic. 2007;8(7):848–66.  https://doi.org/10.1111/j.1600-0854.2007.00572.x.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Cain Department of Chemical EngineeringLouisiana State UniversityBaton RougeUSA
  2. 2.Craft and Hawkins Department of Petroleum EngineeringLouisiana State UniversityBaton RougeUSA

Personalised recommendations