Skip to main content
Log in

Population-based analysis of cell-penetrating peptide uptake using a microfluidic droplet trapping array

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Cell-penetrating peptides (CPPs) have garnered significant attention as a method to introduce reporters and therapeutics into intact cells. While numerous studies have been performed identifying new CPP sequences, relatively little is known about their uptake efficiency at the single-cell level. Here, a droplet microfluidic trapping array was used to characterize CPP uptake across a population of single intact cells. The microfluidic device allowed for facile and rapid isolation and analysis of single-cell fluorescence in a 787-member overhead trapping array with > 99% droplet trapping efficiency. The permeability efficiencies of four different CPPs were studied and compared in HeLa cells. Population analysis was performed using linkage hierarchical cluster analysis by R programming to bin cells into subpopulations expressing very low to very high peptide uptake efficiencies. CPP uptake was observed to be heterogeneous across the population of cells with peptide concentration and sequence both playing important roles in the diversity of CPP uptake, the overall peptide uptake efficiency, and the intracellular homogeneity of peptide distribution. This microfluidic-based analytical approach finds application in personalized medicine and provides new insight in the heterogeneity of CPP uptake which has the potential to affect both biosensor and drug internalization in intact cells.

.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Hamley I. Small bioactive peptides for biomaterials design and therapeutics. Chem Rev. 2017;117(24):14015–41. https://doi.org/10.1021/acs.chemrev.7b00522.

    Article  CAS  PubMed  Google Scholar 

  2. Craik D, Fairlie D, Liras S, Price D. The future of peptide-based drugs. Chem Biol Drug Des. 2013;81(1):136–47. https://doi.org/10.1111/cbdd.12055.

    Article  CAS  PubMed  Google Scholar 

  3. Juan G-V, Morris CM. Fluorescent reporters and biosensors for probing the dynamic behavior of protein kinases. Proteomes. 2015;3(4):369–410.

    Article  CAS  Google Scholar 

  4. Kovarik M, Allbritton N. Measuring enzyme activity in single cells. Trends Biotechnol. 2011;29(5):222–30. https://doi.org/10.1016/j.tibtech.2011.01.003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Di Carlo D, Lee L. Dynamic single-cell analysis for quantitative biology. Anal Chem. 2006;78(23):7918–25.

    Article  PubMed  Google Scholar 

  6. Cai L, Friedman N, Xie X. Stochastic protein expression in individual cells at the single molecule level. Nature. 2006;440(7082):358–62. https://doi.org/10.1038/nature04599.

    Article  CAS  PubMed  Google Scholar 

  7. Wang J, Zhan Y, Bao N, Lu C. Quantitative measurement of quantum dot uptake at the cell population level using microfluidic evanescent-wave-based flow cytometry. Lab Chip. 2012;12(8):1441–5. https://doi.org/10.1039/c2lc21298f.

    Article  CAS  PubMed  Google Scholar 

  8. Murphy T, Zhang Q, Naler L, Ma S, Lu C. Recent advances in the use of microfluidic technologies for single cell analysis. Analyst. 2018;143(1):60–80. https://doi.org/10.1039/c7an01346a.

    Article  CAS  Google Scholar 

  9. Reece A, Xia B, Jiang Z, Noren B, McBride R, Oakey J. Microfluidic techniques for high throughput single cell analysis. Curr Opin Biotechnol. 2016;40:90–6. https://doi.org/10.1016/j.copbio.2016.02.015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Wang J, Bao N, Paris L, Wang H, Geahlen R, Lu C. Detection of kinase translocation using microfluidic electroporative flow cytometry. Anal Chem. 2008;80(4):1087–93. https://doi.org/10.1021/ac702065e.

    Article  CAS  PubMed  Google Scholar 

  11. Shang L, Cheng Y, Zhao Y. Emerging droplet microfluidics. Chem Rev. 2017;117(12):7964–8040. https://doi.org/10.1021/acs.chemrev.6b00848.

    Article  CAS  PubMed  Google Scholar 

  12. Du G, Fang Q, den Toonder J. Microfluidics for cell-based high throughput screening platforms-a review. Anal Chim Acta. 2016;903:36–50. https://doi.org/10.1016/j.aca.2015.11.023.

    Article  CAS  PubMed  Google Scholar 

  13. Pekin D, Skhiri Y, Baret J, Le Corre D, Mazutis L, Ben Salem C, et al. Quantitative and sensitive detection of rare mutations using droplet-based microfluidics. Lab Chip. 2011;11(13):2156–66. https://doi.org/10.1039/c1lc20128j.

    Article  CAS  PubMed  Google Scholar 

  14. Sjostrom S, Joensson H, Svahn H. Multiplex analysis of enzyme kinetics and inhibition by droplet microfluidics using picoinjectors. Lab Chip. 2013;13(9):1754–61. https://doi.org/10.1039/c3lc41398e.

    Article  CAS  PubMed  Google Scholar 

  15. Jin S, Lee S, Lee B, Jeong S, Peter M, Lee C. Programmable static droplet array for the analysis of cell-cell communication in a confined microenvironment. Anal Chem. 2017;89(18):9722–9. https://doi.org/10.1021/acs.analchem.7b01462.

    Article  CAS  PubMed  Google Scholar 

  16. Toseland CP. Fluorescent labeling and modification of proteins. J Chem Biol. 2013;6(3):85–95. https://doi.org/10.1007/s12154-013-0094-5.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Brouzes E, Medkova M, Savenelli N, Marran D, Twardowski M, Hutchison J, et al. Droplet microfluidic technology for single-cell high-throughput screening. Proc Natl Acad Sci U S A. 2009;106(34):14195–200. https://doi.org/10.1073/pnas.0903542106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Khorshidi M, Rajeswari P, Wahlby C, Joensson H, Svahn H. Automated analysis of dynamic behavior of single cells in picoliter droplets. Lab Chip. 2014;14(5):931–7. https://doi.org/10.1039/c3lc51136g.

    Article  CAS  PubMed  Google Scholar 

  19. Jackson-Holmes E, McDevitt T, Lu H. A microfluidic trap array for longitudinal monitoring and multi-modal phenotypic analysis of individual stem cell aggregates. Lab Chip. 2017;17(21):3634–42. https://doi.org/10.1039/c7lc00763a.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Safa N, Anderson JC, Vaithiyanathan M, Pettigrew JH, Pappas GA, Liu D et al. CPProtectides: rapid uptake of well-folded β-hairpin peptides with enhanced resistance to intracellular degradation. Pept Sci 2018:e24092.

  21. Qian Z, LaRochelle J, Jiang B, Lian W, Hard R, Selner N, et al. Early endosomal escape of a cyclic cell-penetrating peptide allows effective cytosolic cargo delivery. Biochemistry. 2014;53(24):4034–46. https://doi.org/10.1021/bi5004102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Mazutis L, Gilbert J, Ung W, Weitz D, Griffiths A, Heyman J. Single-cell analysis and sorting using droplet-based microfluidics. Nat Protoc. 2013;8(5):870–91. https://doi.org/10.1038/nprot.2013.046.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Qian Z, Liu T, Liu Y, Briesewitz R, Barrios A, Jhiang S, et al. Efficient delivery of cyclic peptides into mammalian cells with short sequence motifs. ACS Chem Biol. 2013;8(2):423–31. https://doi.org/10.1021/cb3005275.

    Article  CAS  PubMed  Google Scholar 

  24. Brock G, Pihur V, Datta S, Datta S. clValid: an R package for cluster validation. J Stat Softw. 2008;25(4):1–22.

    Article  Google Scholar 

  25. Charrad M, Ghazzali N, Bioteau V, Niknafs A. NbClust: an R package for determining the relevant number of clusters in a data set. J Stat Softw. 2014;61(6):1–36.

    Article  Google Scholar 

  26. Collins DJ, Neild A, deMello A, Liu A-Q, Ai Y. The Poisson distribution and beyond: methods for microfluidic droplet production and single cell encapsulation. Lab Chip. 2015;15(17):3439–59. https://doi.org/10.1039/C5LC00614G.

    Article  CAS  PubMed  Google Scholar 

  27. Handl J, Knowles J, Kell D. Computational cluster validation in post-genomic data analysis. Bioinformatics. 2005;21(15):3201–12. https://doi.org/10.1093/bioinformatics/bti517.

    Article  CAS  PubMed  Google Scholar 

  28. Dunn C. Well-separated clusters and optimal fuzzy partitions. J Cybern. 1974;4:95–104.

    Article  Google Scholar 

  29. Rousseeuw P. Silhouettes - a graphical aid to the interpretation and validation of cluster-analysis. J Comput Appl Math. 1987;20:53–65. https://doi.org/10.1016/0377-0427(87)90125-7.

    Article  Google Scholar 

  30. Brunner S, Sauer T, Carotta S, Cotten M, Saltik M, Wagner E. Cell cycle dependence of gene transfer by lipoplex polyplex and recombinant adenovirus. Gene Ther. 2000;7(5):401–7. https://doi.org/10.1038/sj.gt.3301102.

    Article  CAS  PubMed  Google Scholar 

  31. El-Sayed A, Futaki S, Harashima H. Delivery of macromolecules using arginine-rich cell-penetrating peptides: ways to overcome endosomal entrapment. AAPS J. 2009;11(1):13–22. https://doi.org/10.1208/s12248-008-9071-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Brock R. The uptake of arginine-rich cell-penetrating peptides: putting the puzzle together. Bioconjug Chem. 2014;25(5):863–8. https://doi.org/10.1021/bc500017t.

    Article  CAS  PubMed  Google Scholar 

  33. Cao Z, Geng S, Li L, Lu C. Detecting intracellular translocation of native proteins quantitatively at the single cell level. Chem Sci. 2014;5(6):2530–5. https://doi.org/10.1039/c4sc00578c.

    Article  CAS  Google Scholar 

  34. Gomez JA, Chen J, Ngo J, Hajkova D, Yeh I-J, Gama V, et al. Cell-penetrating penta-peptides (CPP5s): measurement of cell entry and protein-transduction activity. pharmaceuticals. 2010;3:3594–613.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Duchardt F, Fotin-Mleczek M, Schwarz H, Fischer R, Brock R. A comprehensive model for the cellular uptake of cationic cell-penetrating peptides. Traffic. 2007;8(7):848–66. https://doi.org/10.1111/j.1600-0854.2007.00572.x.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Dr. Nancy Allbritton (University of North Carolina) for providing the GFP-HeLa and OPM-2 cells. The authors would also like to thank Dr. Ted Gauthier (LSU AgCenter Biotechnology Lab) for assistance in the synthesis and purification of the peptides used in this study. The authors would also like to thank Joseph B. Balhoff for assistance in producing the graphical abstract and Riad Elkhanoufi and Wayne Wortmann III for some assistance with device fabrication.

Funding

This work was supported by grants from the National Institute of Biomedical Imaging and Bioengineering (R03EB02935) and the National Science Foundation (CBET1509713) awarded to ATM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adam T. Melvin.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 1823 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Safa, N., Vaithiyanathan, M., Sombolestani, S. et al. Population-based analysis of cell-penetrating peptide uptake using a microfluidic droplet trapping array. Anal Bioanal Chem 411, 2729–2741 (2019). https://doi.org/10.1007/s00216-019-01713-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-019-01713-5

Keywords

Navigation