High-throughput quantitative analysis of phytohormones in sorghum leaf and root tissue by ultra-performance liquid chromatography-mass spectrometry

  • Amy M. Sheflin
  • Jay S. Kirkwood
  • Lisa M. Wolfe
  • Courtney E. Jahn
  • Corey D. Broeckling
  • Daniel P. Schachtman
  • Jessica E. PrenniEmail author
Research Paper
Part of the following topical collections:
  1. Young Investigators in (Bio-)Analytical Chemistry


Plant development, growth, and adaptation to stress are regulated by phytohormones, which can influence physiology even at low concentrations. Phytohormones are chemically grouped according to both structure and function as auxins, cytokinins, abscisic acid, jasmonates, salicylates, gibberellins, and brassinosteroids, among others. This chemical diversity and requirement for highly sensitive detection in complex matrices create unique challenges for comprehensive phytohormone analysis. Here, we present a robust and efficient quantitative UPLC-MS/MS assay for 17 phytohormones, including jasmonates, salicylates, abscisic acid, gibberellins, cytokinins, and auxins. Using this assay, 12 phytohormones were detected and quantified in sorghum plant tissue without the need for solid phase extraction (SPE) or liquid-liquid extraction. Variation of phytohormone profiles was explored in both root and leaf tissues between three genotypes, harvested at two different developmental time points. The results highlight the importance of tissue type, sampling time, and genetic factors when designing experiments that involve phytohormone analysis of sorghum. This research lays the groundwork for future studies, which can combine phytohormone profiling with other datasets such as transcriptome, soil microbiome, genome, and metabolome data, to provide important functional information about adaptation to stress and other environmental variables.


Phytohormones LC-MS/MS Quantification Sorghum High-throughput 



We thank Stephen Kresovich for providing the sorghum seed grown in this field experiment.


This research was supported by the Office of Science (BER), US Department of Energy (DE-SC0014395).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

216_2019_1658_MOESM1_ESM.pdf (105 kb)
ESM 1 (PDF 105 kb)
216_2019_1658_MOESM2_ESM.xlsx (15 kb)
ESM 2 (XLSX 15.1 kb)


  1. 1.
    Davies PJ (2010) The plant hormones: their nature, occurrence, and functions. In: Plant hormones. Springer, pp. 1–15.Google Scholar
  2. 2.
    Kuppusamy KT, Walcher CL, Nemhauser JL. Cross-regulatory mechanisms in hormone signaling. Plant Mol Biol. 2009;69(4):375.CrossRefGoogle Scholar
  3. 3.
    Nemhauser JL, Hong F, Chory J. Different plant hormones regulate similar processes through largely nonoverlapping transcriptional responses. Cell. 2006;126(3):467–75.CrossRefGoogle Scholar
  4. 4.
    Voesenek L, Benschop J, Bou J, Cox M, Groeneveld H, Millenaar F, et al. Interactions between plant hormones regulate submergence-induced shoot elongation in the flooding-tolerant dicot Rumex palustris. Ann Bot. 2003;91(2):205–11.CrossRefGoogle Scholar
  5. 5.
    Lacombe B, Achard P. Long-distance transport of phytohormones through the plant vascular system. Curr Opin Plant Biol. 2016;34:1–8.CrossRefGoogle Scholar
  6. 6.
    Liu S, Chen W, Qu L, Gai Y, Jiang X. Simultaneous determination of 24 or more acidic and alkaline phytohormones in femtomole quantities of plant tissues by high-performance liquid chromatography–electrospray ionization–ion trap mass spectrometry. Anal Bioanal Chem. 2013;405(4):1257–66.CrossRefGoogle Scholar
  7. 7.
    Cai W-J, Ye T-T, Wang Q, Cai B-D, Feng Y-Q. A rapid approach to investigate spatiotemporal distribution of phytohormones in rice. Plant Meth. 2016;12(1):47. Scholar
  8. 8.
    Amzallag G, Lerner H, Poljakoff-Mayber A. Exogenous ABA as a modulator of the response of sorghum to high salinity. J Exp Bot. 1990;41(12):1529–34.CrossRefGoogle Scholar
  9. 9.
    Mullet J, Morishige D, McCormick R, Truong S, Hilley J, McKinley B, et al. Energy sorghum—a genetic model for the design of C4 grass bioenergy crops. J Exp Bot. 2014;65(13):3479–89.CrossRefGoogle Scholar
  10. 10.
    Erdei L, Taleisnik E. Changes in water relation parameters under osmotic and salt stresses in maize and sorghum. Physiol Plantarum. 1993;89(2):381–7.CrossRefGoogle Scholar
  11. 11.
    Vardhini BV, Rao SSR. Amelioration of osmotic stress by brassinosteroids on seed germination and seedling growth of three varieties of sorghum. Plant Growth Regul. 2003;41(1):25–31.CrossRefGoogle Scholar
  12. 12.
    AbuQamar S, Chen X, Dhawan R, Bluhm B, Salmeron J, Lam S, et al. Expression profiling and mutant analysis reveals complex regulatory networks involved in Arabidopsis response to Botrytis infection. Plant J. 2006;48(1):28–44.CrossRefGoogle Scholar
  13. 13.
    Pan X, Welti R, Wang X. Simultaneous quantification of plant hormones by high-performance liquid-chromatography electrospray tandem mass spectrometry. Phytochemistry. 2008;69:1773–81.CrossRefGoogle Scholar
  14. 14.
    Pan X, Welti R, Wang X. Quantitative analysis of major plant hormones in crude plant extracts by high-performance liquid chromatography–mass spectrometry. Nat Protocol. 2010;5(6):986.CrossRefGoogle Scholar
  15. 15.
    Mace ES, Tai S, Gilding EK, Li Y, Prentis PJ, Bian L, et al. Whole-genome sequencing reveals untapped genetic potential in Africa’s indigenous cereal crop sorghum. Nat Commun. 2013;4.Google Scholar
  16. 16.
    Oksman-Caldentey K-M, Saito K. Integrating genomics and metabolomics for engineering plant metabolic pathways. Curr Biotechnol Opin. 2005;16(2):174–9.CrossRefGoogle Scholar
  17. 17.
    Kusano M, Yang Z, Okazaki Y, Nakabayashi R, Fukushima A, Saito K. Using metabolomic approaches to explore chemical diversity in rice. Mol Plant. 2015;8(1):58–67.CrossRefGoogle Scholar
  18. 18.
    Roessner U, Luedemann A, Brust D, Fiehn O, Linke T, Willmitzer L, et al. Metabolic profiling allows comprehensive phenotyping of genetically or environmentally modified plant systems. Plant Cell. 2001;13(1):11–29.CrossRefGoogle Scholar
  19. 19.
    Scandiani MM, Luque AG, Razori MV, Ciancio Casalini L, Aoki T, O’donnell K, et al. Metabolic profiles of soybean roots during early stages of Fusarium tucumaniae infection. J Exp Bot. 2014;66(1):391–402.CrossRefGoogle Scholar
  20. 20.
    Sánchez-Martín J, Heald J, Kingston-Smith A, Winters A, Rubiales D, Sanz M, et al. A metabolomic study in oats (Avena sativa) highlights a drought tolerance mechanism based upon salicylate signalling pathways and the modulation of carbon, antioxidant and photo-oxidative metabolism. Plant Cell Environ. 2015;38(7):1434–52.CrossRefGoogle Scholar
  21. 21.
    Tsogtbaatar E, Cocuron J-C, Sonera MC, Alonso AP. Metabolite fingerprinting of pennycress (Thlaspi arvense L.) embryos to assess active pathways during oil synthesis. J Exp Bot. 2015;66(14):4267–77.CrossRefGoogle Scholar
  22. 22.
    Weston LA. Utilization of allelopathy for weed management in agroecosystems. Agron J. 1996;88(6):860–6.CrossRefGoogle Scholar
  23. 23.
    Rooney WL, Blumenthal J, Bean B, Mullet JE. Designing sorghum as a dedicated bioenergy feedstock. Biofuels Bioprod Biorefin. 2007;1(2):147–57.CrossRefGoogle Scholar
  24. 24.
    Thakur M, Sharma A. Salt stress and phytohormone (ABA)-induced changes in germination, sugars and enzymes of carbohydrate metabolism in Sorghum bicolor (L.) Moench seeds. J Agric Soc Sci. 2005;1(2):89–93.Google Scholar
  25. 25.
    Shen C, Bai Y, Wang S, Zhang S, Wu Y, Chen M, et al. Expression profile of PIN, AUX/LAX and PGP auxin transporter gene families in Sorghum bicolor under phytohormone and abiotic stress. FEBS J. 2010;277(14):2954–69.CrossRefGoogle Scholar
  26. 26.
    Wang S, Bai Y, Shen C, Wu Y, Zhang S, Jiang D, et al. Auxin-related gene families in abiotic stress response in Sorghum bicolor. Funct Integr Genom. 2010;10(4):533–46.CrossRefGoogle Scholar
  27. 27.
    Wobbrock JO, Findlater L, Gergle D, Higgins JJ. The aligned rank transform for nonparametric factorial analyses using only anova procedures. In: Proceedings of the SIGCHI conference on human factors in computing systems. ACM; 2011. p. 143–146.Google Scholar
  28. 28.
    Setter TL. Analysis of constituents for phenotyping drought tolerance in crop improvement. Front Physiol. 2012;3:180. Scholar
  29. 29.
    Walton DC. Biochemistry and physiology of abscisic acid. Annu Rev Plant Physiol. 1980;31(1):453–89.CrossRefGoogle Scholar
  30. 30.
    Lata C, Prasad M. Role of DREBs in regulation of abiotic stress responses in plants. J Exp Bot. 2011;62(14):4731–48. Scholar
  31. 31.
    Zhang JH, Jia WS, Yang JC, Ismail AM. Role of ABA in integrating plant responses to drought and salt stresses. Field Crop Res. 2006;97(1):111–9. Scholar
  32. 32.
    Rodriguez PL. Abscisic acid catabolism generates phaseic acid, a molecule able to activate a subset of ABA receptors. Mol Plant. 2016;9(11):1448–50.CrossRefGoogle Scholar
  33. 33.
    Kepka M, Benson CL, Gonugunta VK, Nelson KM, Christmann A, Grill E, et al. Action of natural abscisic acid precursors and catabolites on abscisic acid receptor complexes. Plant Physiol. 2011;157(4):2108–19.Google Scholar
  34. 34.
    Sharkey TD, Raschke K. Effects of phaseic acid and dihydrophaseic acid on stomata and the photosynthetic apparatus. Plant Physiol. 1980;65(2):291–7.CrossRefGoogle Scholar
  35. 35.
    Ren H, Gao Z, Chen L, Wei K, Liu J, Fan Y, et al. Dynamic analysis of ABA accumulation in relation to the rate of ABA catabolism in maize tissues under water deficit. J Exp Bot. 2006;58(2):211–9.CrossRefGoogle Scholar
  36. 36.
    Glazebrook J. Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Annu Rev Phytopathol. 2005;43:205–27. Scholar
  37. 37.
    McConn M, Creelman RA, Bell E, Mullet JE. Jasmonate is essential for insect defense in Arabidopsis. Proc Natl Acad Sci U S A. 1997;94(10):5473–7.CrossRefGoogle Scholar
  38. 38.
    Bari R, Jones JD. Role of plant hormones in plant defence responses. Plant Mol Biol. 2009;69(4):473–88.CrossRefGoogle Scholar
  39. 39.
    Loake G, Grant M. Salicylic acid in plant defence—the players and protagonists. Curr Opin Plant Biol. 2007;10(5):466–72.CrossRefGoogle Scholar
  40. 40.
    Navarro L, Bari R, Achard P, Lison P, Nemri A, Harberd NP, et al. DELLAs control plant immune responses by modulating the balance of jasmonic acid and salicylic acid signaling. Curr Biol. 2008;18(9):650–5. Scholar
  41. 41.
    Nishiyama R, Watanabe Y, Leyva-Gonzalez MA, Van Ha C, Fujita Y, Tanaka M, et al. Arabidopsis AHP2, AHP3, and AHP5 histidine phosphotransfer proteins function as redundant negative regulators of drought stress response. Proc Natl Acad Sci U S A. 2013;110(12):4840–5. Scholar
  42. 42.
    Ahmad P, Rasool S, Gul A, Sheikh SA, Akram NA, Ashraf M, et al. Jasmonates: multifunctional roles in stress tolerance. Front Plant Sci. 2016;7.
  43. 43.
    Weng J-K, Ye M, Li B, Noel JP (2016) Co-evolution of hormone metabolism and signaling networks expands plant adaptive plasticity. Cell 166;(4):881–93CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Horticulture and Landscape ArchitectureColorado State UniversityFort CollinsUSA
  2. 2.Metabolomics Core FacilityUniversity of California, RiversideRiversideUSA
  3. 3.Proteomics and Metabolomics Core FacilityColorado State UniversityFort CollinsUSA
  4. 4.Department of Bioagricultural Sciences and Pest ManagementColorado State UniversityFort CollinsUSA
  5. 5.Department of Agronomy and HorticultureUniversity of Nebraska – LincolnLincolnUSA

Personalised recommendations