Advertisement

Analytical and Bioanalytical Chemistry

, Volume 411, Issue 10, pp 1979–1988 | Cite as

Selective ratiometric fluorescence detection of hypochlorite by using aggregation-induced emission dots

  • Hong Wang
  • Yanyang He
  • Yuqi Li
  • Chonghua Zhang
  • Peisheng ZhangEmail author
  • Jiaxi Cui
  • Yunfei Long
  • Shu Chen
  • Rongjin Zeng
  • Jian ChenEmail author
Paper in Forefront
  • 211 Downloads

Abstract

The development of simple and effective tools for selective ratiometric detection of hypochlorite (ClO) is one of the most important goals for elucidating the biofunction of ClO in associated diseases. However, most developmental probes suffer from the notorious aggregation-caused quenching (ACQ) effect that greatly limits their applications. Herein, we report on novel aggregation-induced emission dots (AIED) for ratiometric detection of ClO via a co-precipitation strategy. The AIED nanoprobe displayed a ratiometric signal output, which was more promising to minimize the bad environmental factors and simultaneously avoided the ACQ effect. Notably, amphiphilic block copolymer endowed the nanoprobe with stable water dispersibility and easy modification. The as-prepared AIED probe exhibited high sensitivity (~ 89 nM), high selectivity, outstanding photostability, and prominent long-term fluorescence stability. Furthermore, the as-prepared AIED was applied for the visualized fluorescence detection of ClO and further utilized to detect ClO in real samples. We expect the nanoprobe to be an outstanding tool to understand ClO-associated diseases.

Graphical abstract

Illustration of the probe for the detection of ClO.

Keywords

Ratiometric fluorescent probe Hypochlorite Aggregation-induced emission dots Amphiphilic block copolymer 

Notes

Acknowledgements

We are grateful for the financial support of the NSFC (51773056, 51603067, 51873058, 21705040, 51373002), Hunan Provincial Natural Science Foundation of China (2018JJ3143), China Postdoctoral Science Foundation (2017 M622571, 2017 M622568 and 2018 T110824), Open Project Program of State Key Laboratory of Chemo/Biosensing and Chemometrics (2016019), Open Project Program of Key Laboratory for High Performance and Functional Polymer Materials of Guangdong Province (South China University of Technology) (20160005) and Hunan Provincial Innovation Foundation For Postgraduate (CX2017B622).

Compliance with ethical standards

Conflicts of interest

There are no conflicts of interest to declare.

Supplementary material

216_2019_1653_MOESM1_ESM.pdf (1.1 mb)
ESM 1 (PDF 1080 kb)

References

  1. 1.
    Casciaro M, Di SE, Pace E, Ventura-Spagnolo E, Navarra M, Gangemi S. Chlorinative stress in age-related diseases: a literature review. Immun Ageing. 2017;14:21.CrossRefGoogle Scholar
  2. 2.
    Finkel T, Holbrook NJ. Oxidants, oxidative stress and the biology of ageing. Nature. 2000;408:239–47.CrossRefGoogle Scholar
  3. 3.
    Winterbourn CC. Reconciling the chemistry and biology of reactive oxygen species. Nat Chem Biol. 2008;4(5):278–86.CrossRefGoogle Scholar
  4. 4.
    Hampton MB, Kettle AJ, Winterbourn CC. Inside the neutrophil phagosome: oxidants, myeloperoxidase, and bacterial killing. Blood. 1998;92(9):3007–17.Google Scholar
  5. 5.
    Pattison DI, Davies MJ. Reactions of myeloperoxidase-derived oxidants with biological substrates: gaining chemical insight into human inflammatory diseases. Curr Med Chem. 2006;13(27):3271–90.CrossRefGoogle Scholar
  6. 6.
    Benhar M, Engelberg D, Levitzki A. ROS, stress-activated kinases and stress signaling in cancer. EMBO Rep. 2002;3(5):420–5.CrossRefGoogle Scholar
  7. 7.
    Aoki T, Munemori M. Continuous flow determination of free chlorine in water. Anal Chem. 1983;55(2):209–12.CrossRefGoogle Scholar
  8. 8.
    WHO. Chapter 8. Chemical aspects. Guidelines for drinking-water quality, 4th ed. Geneva: World Health Organization, 2011; p 187.Google Scholar
  9. 9.
    He Y, Xu Y, Shang Y, Zheng S, Chen W, Pang Y. An ESIPT-based fluorescent probe for the determination of hypochlorous acid (HClO): mechanism study and its application in cell imaging. Anal Bioanal Chem. 2018;410(27):7007–17.CrossRefGoogle Scholar
  10. 10.
    He L, Dong B, Liu Y, Lin W. Fluorescent chemosensors manipulated by dual/triple interplaying sensing mechanisms. Chem Soc Rev. 2016;45(23):6449–61.CrossRefGoogle Scholar
  11. 11.
    Chen X, Wang F, Hyun JY, Wei T, Qiang J, Ren X, et al. Recent progress in the development of fluorescent, luminescent and colorimetric probes for detection of reactive oxygen and nitrogen species. Chem Soc Rev. 2016;45(10):2976–3016.CrossRefGoogle Scholar
  12. 12.
    Lin VS, Chen W, Xian M, Chang CJ. Chemical probes for molecular imaging and detection of hydrogen sulfide and reactive sulfur species in biological systems. Chem Soc Rev. 2015;44(14):4596–618.CrossRefGoogle Scholar
  13. 13.
    Zhu C, Liu L, Yang Q, Lv F, Wang S. Water-soluble conjugated polymers for imaging, diagnosis, and therapy. Chem Rev. 2012;112(8):4687–735.CrossRefGoogle Scholar
  14. 14.
    Zhang P, Wang H, Zhang D, Zeng X, Zeng R, Xiao L, et al. Two-photon fluorescent probe for lysosome-targetable hypochlorous acid detection within living cells. Sensors Actuators B Chem. 2018;255:2223–31.CrossRefGoogle Scholar
  15. 15.
    Chen X, Pradhan T, Wang F, Kim JS, Yoon J. Fluorescent chemosensors based on spiroring-opening of xanthenes and related derivatives. Chem Rev. 2012;112(3):1910–56.CrossRefGoogle Scholar
  16. 16.
    Wang H, Zhang P, Tian Y, Zhang Y, Yang H, Chen S, et al. Real-time monitoring of endogenous cysteine levels in living cells using a CD-based ratiometric fluorescent nanoprobe. Anal Bioanal Chem. 2018;410(18):4379–86.CrossRefGoogle Scholar
  17. 17.
    Zhu H, Fan J, Xu Q, Li H, Wang J, Gao P, et al. Imaging of lysosomal pH changes with a fluorescent sensor containing a novel lysosome-locating group. Chem Commun. 2012;48(96):11766–8.CrossRefGoogle Scholar
  18. 18.
    Zhang P, Tian Y, Liu H, Ren J, Wang H, Zeng R, et al. In vivo imaging of hepatocellular nitric oxide using a hepatocyte-targeting fluorescent sensor. Chem Commun. 2018;54:7231–4.CrossRefGoogle Scholar
  19. 19.
    Chen W, Liu C, Peng B, Zhao Y, Pacheco A, Xian M. New fluorescent probes for sulfane sulfurs and the application in bioimaging. Chem Sci. 2013;4(7):2892–6.CrossRefGoogle Scholar
  20. 20.
    Yuan L, Wang L, Agrawalla BK, Park SJ, Zhu H, Sivaraman B, et al. Development of targetable two-photon fluorescent probes to image hypochlorous acid in mitochondria and lysosome in live cell and inflamed mouse model. J Am Chem Soc. 2015;137(18):5930–8.CrossRefGoogle Scholar
  21. 21.
    Wang H, Zhang P, Chen J, Li Y, Yu M, Long Y, et al. Polymer nanoparticle-based ratiometric fluorescent probe for imaging Hg2+ ions in living cells. Sensors Actuators B Chem. 2017;242:818–24.CrossRefGoogle Scholar
  22. 22.
    Zhang H, Liu J, Liu C, Yu P, Sun M, Yan X, et al. Imaging lysosomal highly reactive oxygen species and lighting up cancer cells and tumors enabled by a Si-rhodamine-based near-infrared fluorescent probe. Biomaterials. 2017;133:60–9.CrossRefGoogle Scholar
  23. 23.
    Chen W, Pacheco A, Takano Y, Day JJ, Hanaoka K, Xian M. A single fluorescent probe to visualize hydrogen sulfide and hydrogen polysulfides with different fluorescence signals. Angew Chem Int Ed. 2016;55(34):9993–6.CrossRefGoogle Scholar
  24. 24.
    Ouadahi K, Sbargoud K, Allard E, Larpent C. FRET-mediated pH-responsive dual fluorescent nanoparticles prepared via click chemistry. Nanoscale. 2012;4(3):727–32.CrossRefGoogle Scholar
  25. 25.
    Lv J, Wang F, Wei T, Chen X. Highly sensitive and selective fluorescent probes for the detection of HOCl/OCl based on fluorescein derivatives. Ind Eng Chem Res. 2017;56(13):3757–64.CrossRefGoogle Scholar
  26. 26.
    Zhu B, Wu L, Zhang M, Wang Y, Liu C, Wang Z, et al. A highly specific and ultrasensitive near-infrared fluorescent probe for imaging basal hypochlorite in the mitochondria of living cells. Biosens Bioelectron. 2018;107:218–23.CrossRefGoogle Scholar
  27. 27.
    Yin C, Zhu H, Xie C, Zhang L, Chen P, Fan Q, et al. Organic nanoprobe cocktails for multilocal and multicolor fluorescence imaging of reactive oxygen species. Adv Funct Mater. 2017;27(23):1700493.CrossRefGoogle Scholar
  28. 28.
    Yin C, Zhen X, Fan Q, Huang W, Pu K. Degradable semiconducting oligomer amphiphile for ratiometric photoacoustic imaging of hypochlorite. ACS Nano. 2017;11(4):4174–82.CrossRefGoogle Scholar
  29. 29.
    Chen J, Zhang C, Lv K, Wang H, Zhang P, Yi P, et al. A silica nanoparticle-based dual-responsive ratiometric probe for visualizing hypochlorite and temperature with distinct fluorescence signals. Sensors Actuators B Chem. 2017;251:533–41.CrossRefGoogle Scholar
  30. 30.
    Zhang KY, Zhang J, Liu Y, Liu S, Zhang P, Zhao Q, et al. Core-shell structured phosphorescent nanoparticles for detection of exogenous and endogenous hypochlorite in live cells via ratiometric imaging and photoluminescence lifetime imaging microscopy. Chem Sci. 2015;6(1):301–7.CrossRefGoogle Scholar
  31. 31.
    Huang Y, Zhang P, Gao M, Zeng F, Qin A, Wu S, et al. Ratiometric detection and imaging of endogenous hypochlorite in live cells and in vivo achieved by using an aggregation induced emission (AIE)-based nanoprobe. Chem Commun. 2016;52(45):7288–91.CrossRefGoogle Scholar
  32. 32.
    Wang H, Zhang P, Hong Y, Zhao B, Yi P, Chen J. Ratiometric imaging of lysosomal hypochlorous acid enabled by FRET-based polymer dots. Polym Chem. 2017;8(37):5795–802.CrossRefGoogle Scholar
  33. 33.
    Huang X, Song J, Yung BC, Huang X, Xiong Y, Chen X. Ratiometric optical nanoprobes enable accurate molecular detection and imaging. Chem Soc Rev. 2018;47(8):2873–920.CrossRefGoogle Scholar
  34. 34.
    Zhang P, Wang H, Hong Y, Yu M, Zeng R, Long Y, et al. Selective visualization of endogenous hypochlorous acid in zebrafish during lipopolysaccharide-induced acute liver injury using a polymer micelles-based ratiometric fluorescent probe. Biosens Bioelectron. 2018;99:318–24.CrossRefGoogle Scholar
  35. 35.
    Yu C, Li X, Zeng F, Zheng F, Wu S. Carbon-dot-based ratiometric fluorescent sensor for detecting hydrogen sulfide in aqueous media and inside live cells. Chem Commun. 2013;49(4):403–5.CrossRefGoogle Scholar
  36. 36.
    Chen G, Song F, Wang J, Yang Z, Sun S, Fan J, et al. FRET spectral unmixing: a ratiometric fluorescent nanoprobe for hypochlorite. Chem Commun. 2012;48(24):2949–51.CrossRefGoogle Scholar
  37. 37.
    Zhang YR, Chen XP, Jing S, Zhang JY, Yuan Q, Miao JY, et al. A ratiometric fluorescent probe for sensing HOCl based on a coumarin-rhodamine dyad. Chem Commun. 2014;50(91):14241–4.Google Scholar
  38. 38.
    Ding D, Li K, Liu B, Tang BZ. Bioprobes based on AIE fluorogens. Acc Chem Res. 2013;46(11):2441–53.CrossRefGoogle Scholar
  39. 39.
    Li K, Liu B. Polymer-encapsulated organic nanoparticles for fluorescence and photoacoustic imaging. Chem Soc Rev. 2014;43(18):6570–97.CrossRefGoogle Scholar
  40. 40.
    Zhang P, Nie X, Gao M, Zeng F, Qin A, Wu S, et al. A highly selective fluorescent nanoprobe based on AIE and ESIPT for imaging hydrogen sulfide in live cells and zebrafish. Mater Chem Front. 2017;1(5):838–45.CrossRefGoogle Scholar
  41. 41.
    Hong Y, Lam JW, Tang BZ. Aggregation-induced emission. Chem Soc Rev. 2011;40(11):5361–88.CrossRefGoogle Scholar
  42. 42.
    Qian J, Tang BZ. AIE luminogens for bioimaging and theranostics: from organelles to animals. Chem. 2017;3(1):56–91.CrossRefGoogle Scholar
  43. 43.
    Yuan Y, Xu S, Cheng X, Cai X, Liu B. Bioorthogonal turn-on probe based on aggregation-induced emission characteristics for cancer cell imaging and ablation. Angew Chem Int Ed. 2016;55(22):6457–61.CrossRefGoogle Scholar
  44. 44.
    Situ B, Chen S, Zhao E, Leung CWT, Chen Y, Hong Y, et al. Real-time imaging of cell behaviors in living organisms by a mitochondria-targeting AIE fluorogen. Adv Funct Mater. 2016;26(39):7132–8.CrossRefGoogle Scholar
  45. 45.
    Liang J, Tang BZ, Liu B. Specific light-up bioprobes based on AIEgen conjugates. Chem Soc Rev. 2015;44(10):2798–811.CrossRefGoogle Scholar
  46. 46.
    Yan X, Remond M, Zheng Z, Hoibian E, Soulage C, Chambert S, et al. General and scalable approach to bright, stable, and functional AIE fluorogen colloidal nanocrystals for in vivo imaging. ACS Appl Mater Interfaces. 2018;10(30):25154–65.CrossRefGoogle Scholar
  47. 47.
    Feng G, Liu B. Aggregation-induced emission (AIE) dots: emerging theranostic nanolights. Acc Chem Res. 2018;51(6):1404–14.CrossRefGoogle Scholar
  48. 48.
    Li K, Zhu Z, Cai P, Liu R, Tomczak N, Ding D, et al. Organic dots with aggregation-induced emission (AIE dots) characteristics for dual-color cell tracing. Chem Mater. 2013;25(21):4181–7.CrossRefGoogle Scholar
  49. 49.
    Sheng Z, Guo B, Hu D, Xu S, Wu W, Liew WH, et al. Bright aggregation-induced-emission dots for targeted synergetic NIR-II fluorescence and NIR-I photoacoustic imaging of orthotopic brain tumors. Adv Mater. 2018;30:1800766.CrossRefGoogle Scholar
  50. 50.
    Qin W, Li K, Feng G, Li M, Yang Z, Liu B, et al. Bright and photostable organic fluorescent dots with aggregation-induced emission characteristics for noninvasive long-term cell imaging. Adv Funct Mater. 2014;24(5):635–43.CrossRefGoogle Scholar
  51. 51.
    Mei J, Huang Y, Tian H. Progress and trends in AIE-based bioprobes: a brief overview. ACS Appl Mater Interfaces. 2018;10(15):12217–61.CrossRefGoogle Scholar
  52. 52.
    Zhang P, Hong Y, Wang H, Yu M, Gao Y, Zeng R, et al. Selective visualization of endogenous hydrogen sulfide in lysosomes using aggregation induced emission dots. Polym Chem. 2017;8(46):7271–8.CrossRefGoogle Scholar
  53. 53.
    Wang L, Zhuo S, Tang H, Cao D. A near-infrared turn on fluorescent probe for cysteine based on organic nanoparticles. Sensors Actuators B Chem. 2018;277:437–44.CrossRefGoogle Scholar
  54. 54.
    Song Z, Mao D, Sung SH, Kwok RT, Lam JW, Kong D, et al. Activatable fluorescent nanoprobe with aggregation-induced emission characteristics for selective in vivo imaging of elevated peroxynitrite generation. Adv Mater. 2016;28(33):7249–56.CrossRefGoogle Scholar
  55. 55.
    Ding A-X, Shi Y-D, Zhang K-X, Sun W, Tan Z-L, Lu Z-L, et al. Self-assembled aggregation-induced emission micelle (AIE micelle) as interfacial fluorescence probe for sequential recognition of Cu2+ and ATP in water. Sensors Actuators B Chem. 2018;255:440–7.CrossRefGoogle Scholar
  56. 56.
    Wu Y, Huang S, Zeng F, Wang J, Yu C, Huang J, et al. A ratiometric fluorescent system for carboxylesterase detection with AIE dots as FRET donors. Chem Commun. 2015;51(64):12791–4.CrossRefGoogle Scholar
  57. 57.
    Zhang Z, Fan J, Cheng G, Ghazali S, Du J, Peng X. Fluorescence completely separated ratiometric probe for HClO in lysosomes. Sensors Actuators B Chem. 2017;246:293–9.CrossRefGoogle Scholar
  58. 58.
    Cheng G, Fan J, Sun W, Sui K, Jin X, Wang J, et al. A highly specific BODIPY-based probe localized in mitochondria for HClO imaging. Analyst. 2013;138(20):6091–6.CrossRefGoogle Scholar
  59. 59.
    Park J, Kim H, Choi Y, Kim Y. A ratiometric fluorescent probe based on a BODIPY-DCDHF conjugate for the detection of hypochlorous acid in living cells. Analyst. 2013;138(12):3368–71.CrossRefGoogle Scholar
  60. 60.
    Chen L-D, Ding H-L, Wang N, An Y, Lü C-W. Two highly selective and sensitive fluorescent probes design and apply to specific detection of hypochlorite. Dyes Pigments. 2019;161:510–8.CrossRefGoogle Scholar
  61. 61.
    Yue Y, Huo F, Li X, Wen Y, Yi T, Salamanca J, et al. pH-dependent fluorescent probe that can be tuned for cysteine or homocysteine. Org Lett. 2017;19(1):82–5.CrossRefGoogle Scholar
  62. 62.
    Jiang X, Yu Y, Chen J, Zhao M, Chen H, Song X, et al. Quantitative imaging of glutathione in live cells using a reversible reaction-based ratiometric fluorescent probe. ACS Chem Biol. 2015;10(3):864–74.CrossRefGoogle Scholar
  63. 63.
    Kim G-J, Lee K, Kwon H, Kim H-J. Ratiometric fluorescence imaging of cellular glutathione. Org Lett. 2011;13(11):2799–801.CrossRefGoogle Scholar
  64. 64.
    Jiang M, Gu X, Lam JWY, Zhang Y, Kwok RTK, Wong KS, et al. Two-photon AIE bio-probe with large stokes shift for specific imaging of lipid droplets. Chem Sci. 2017;8(8):5440–6.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Hong Wang
    • 1
  • Yanyang He
    • 1
    • 2
  • Yuqi Li
    • 1
  • Chonghua Zhang
    • 1
    • 2
  • Peisheng Zhang
    • 1
    • 2
    Email author
  • Jiaxi Cui
    • 3
    • 4
  • Yunfei Long
    • 1
  • Shu Chen
    • 1
  • Rongjin Zeng
    • 1
  • Jian Chen
    • 1
    Email author
  1. 1.Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers, Hunan Province College Key Laboratory of QSAR/QSPR, School of Chemistry and Chemical EngineeringHunan University of Science and TechnologyXiangtanChina
  2. 2.State Key Laboratory of Chemo/Biosensing and ChemometricsHunan UniversityChangshaChina
  3. 3.INM-Leibniz Institute for New MaterialsSaarbrückenGermany
  4. 4.Institute of Fundamental and Frontier SciencesUniversity of Electronic Science and Technology of ChinaChengduChina

Personalised recommendations