Advertisement

Analytical and Bioanalytical Chemistry

, Volume 411, Issue 10, pp 2169–2175 | Cite as

Development of a high sensitivity quantum dot-based fluorescent quenching lateral flow assay for the detection of zearalenone

  • Yuan Chen
  • Qiangqiang Fu
  • Jun Xie
  • Hong WangEmail author
  • Yong TangEmail author
Research Paper
  • 121 Downloads

Abstract

Zearalenone (ZEN) is a common carcinogenic toxin related to cereal contamination. In this study, we developed a high sensitivity quantum dot (QD)-based fluorescent quenching lateral flow assay (LFA) for sensitive ZEN detection. The linear detection range of the fluorescent quenching LFA for ZEN was 0.78–25 ng/mL, and the limit of detection was 0.58 ng/mL. In addition, the fluorescent quenching LFA showed high recovery (83.1–93.6%) for detection of ZEN concentrations spiked into corn samples. These results indicate that the QD-based fluorescent quenching LFA may be a valuable tool for preliminary screening of ZEN contamination.

Keywords

Lateral flow assay Fluorescent quenching Zearalenone Quantum dots 

Notes

Acknowledgements

This work was supported Grant from the National Key Technology R & D Program, No. 2008BAK42B05 and Guangdong Province Key Scientific Research, No. 2013A022100031.

Compliance with ethical standards

Use of immune spleen cells for the production of monoclonal antibodies was approved by the Experimental Animal Ethics Committee of Jinan University. The Jinan University Experimental Animal Ethics Committee approved all animal experiments for preparation of anti-ZEN antibody and all experiments according to China Laboratory Animal Guidelines.

Conflicts of interest

There is no conflict of interest.

Supplementary material

216_2019_1652_MOESM1_ESM.pdf (292 kb)
ESM 1 (PDF 256 kb)

References

  1. 1.
    Zinedine A, Soriano JM, Molto JC, Manes J. Review on the toxicity, occurrence, metabolism, detoxification, regulations and intake of zearalenone: an oestrogenic mycotoxin. Food Chem Toxicol. 2007;45(1):1–18.CrossRefGoogle Scholar
  2. 2.
    Li X, Li P, Zhang Q, Li R, Zhang W, Zhang Z, et al. Multi-component immunochromatographic assay for simultaneous detection of aflatoxin B 1, ochratoxin A and zearalenone in agro-food. Biosens Bioelectron. 2013;49:426–32.Google Scholar
  3. 3.
    Shim W-B, Kim K-Y, Chung D-H. Development and validation of a gold nanoparticle immunochromatographic assay (ICG) for the detection of zearalenone. Agric Food Chem. 2009;57(10):4035–41.CrossRefGoogle Scholar
  4. 4.
    Organization WH (1981) Toxicological evaluation of certain food additives. In: Food Additives Series (FAO/WHO). vol 16. Geneva: World Health Organization.Google Scholar
  5. 5.
    Kovács F, Szathmáry C, Palyusik M. Data on determination of toxin F-2 (zearalenone) by high-pressure liquid, gas and thin-layer chromatography. Acta Veter Acad Sci Hung. 1975;25(2–3):223.Google Scholar
  6. 6.
    Soares LM, Rodriguez-Amaya DB. Survey of aflatoxins, ochratoxin A, zearalenone, and sterigmatocystin in some Brazilian foods by using multi-toxin thin-layer chromatographic method. J Assoc Off Anal Chem. 1989;72(1):22–6.Google Scholar
  7. 7.
    Tanaka T, Yoneda A, Inoue S, Sugiura Y, Ueno Y. Simultaneous determination of trichothecene mycotoxins and zearalenone in cereals by gas chromatography–mass spectrometry. J Chromatogr A. 2000;882(1–2):23–8.CrossRefGoogle Scholar
  8. 8.
    Wang Y, Chai T, Lu G, Quan C, Duan H, Yao M, et al. Simultaneous detection of airborne aflatoxin, ochratoxin and zearalenone in a poultry house by immunoaffinity clean-up and high-performance liquid chromatography. Environ Res. 2008;107(2):139–44.Google Scholar
  9. 9.
    Warner R, Ram BP, Hart LP, Pestka JJ. Screening for zearalenone in corn by competitive direct enzyme-linked immunosorbent assay. J Agric Food Chem. 1986;34(4):714–7.CrossRefGoogle Scholar
  10. 10.
    Bennett GA, Nelsen TC, Miller BM. Enzyme-linked immunosorbent assay for detection of zearalenone in corn, wheat, and pig feed: collaborative study. J AOAC Int. 1994;77(6):1500–9.Google Scholar
  11. 11.
    Kolosova AY, De SS, Sibanda L, Verheijen R, Van PC. Development of a colloidal gold-based lateral-flow immunoassay for the rapid simultaneous detection of zearalenone and deoxynivalenol. Anal Bioanal Chem. 2007;389(7):2103.CrossRefGoogle Scholar
  12. 12.
    Chen Y, Fu Q, Li D, Xie J, Ke D, Song Q, et al. A smartphone colorimetric reader integrated with an ambient light sensor and a 3D printed attachment for on-site detection of zearalenone. Anal Bioanal Chem. 2017;409(28):6567–74.Google Scholar
  13. 13.
    You Q, Liu M, Liu Y, Zheng H, Hu ZW, Zhou Y, Wang B. Lanthanide-labelled immunochromatographic strip assay for the on-site identification of ancient silk. ACS Sens. 2017;2(4):569–75.CrossRefGoogle Scholar
  14. 14.
    Sun Y, Xing G, Yang J, Wang F, Deng R, Zhang G, Zhang Y. Development of an immunochromatographic test strip for simultaneous qualitative and quantitative detection of ochratoxin A and zearalenone in cereal. J Sci Food Agric. 2016;96(11):3673–8.Google Scholar
  15. 15.
    Fu Q, Liu HL, Wu Z, Liu A, Yao C, Li X, et al. Rough surface Au@ Ag core–shell nanoparticles to fabricating high sensitivity SERS immunochromatographic sensors. J Nanobiotech. 2015;13(1):81.Google Scholar
  16. 16.
    Wang X, Choi N, Cheng Z, Ko J, Chen L, Choo J. Simultaneous detection of dual nucleic acids using a SERS-based lateral flow biosensor. Anal Chem. 2017;89(2):1163.CrossRefGoogle Scholar
  17. 17.
    Liang J, Liu H, Lan C, Fu Q, Huang C, Luo Z, et al. Silver nanoparticle enhanced Raman scattering-based lateral flow immunoassays for ultra-sensitive detection of the heavy metal chromium. Nanotechnology. 2014;25(49):495501.Google Scholar
  18. 18.
    Kim YM, Oh SW, Jeong SY, Pyo DJ, Choi EY. Development of an ultrarapid one-step fluorescence immunochromatographic assay system for the quantification of microcystins. Environ Sci Technol. 2003;37(9):1899–904.CrossRefGoogle Scholar
  19. 19.
    Yeo SJ, Cuc BT, Kim SA, Kim DT, Bao DT, Tien TT, et al. Rapid detection of avian influenza A virus by immunochromatographic test using a novel fluorescent dye. Biosens Bioelectron. 2017;94:677.Google Scholar
  20. 20.
    Vyas SS, Jadhav SV, Majee SB, Shastri JS, Patravale VB. Development of immunochromatographic strip test using fluorescent, micellar silica nanosensors for rapid detection of B. abortus antibodies in milk samples. Biosens Bioelectron. 2015;70:254–60.CrossRefGoogle Scholar
  21. 21.
    Chen Y, Chen Q, Han M, Liu J, Zhao P, He L, et al. Near-infrared fluorescence-based multiplex lateral flow immunoassay for the simultaneous detection of four antibiotic residue families in milk. Biosens Bioelectron. 2016;79:430–4.Google Scholar
  22. 22.
    Shi CY, Deng N, Liang JJ, Zhou KN, Fu QQ, Tang Y. A fluorescent polymer dots positive readout fluorescent quenching lateral flow sensor for ractopamine rapid detection. Anal Chim Acta. 2015;854:202–8.CrossRefGoogle Scholar
  23. 23.
    Hu J, Zhang ZL, Wen CY, Tang M, Wu LL, Liu C, et al. Sensitive and quantitative detection of C-reaction protein based on immunofluorescent nanospheres coupled with lateral flow test strip. Anal Chem. 2016;88(12):6577.Google Scholar
  24. 24.
    Foubert A, Beloglazova NV, De SS. Comparative study of colloidal gold and quantum dots as labels for multiplex screening tests for multi-mycotoxin detection. Anal Chim Acta. 2016;955:48–57.CrossRefGoogle Scholar
  25. 25.
    Taranova NA, Berlina AN, Zherdev AV, Dzantiev BB. 'Traffic light' immunochromatographic test based on multicolor quantum dots for the simultaneous detection of several antibiotics in milk. Biosens Bioelectron. 2015;63(2):255–61.CrossRefGoogle Scholar
  26. 26.
    Qu H, Zhang Y, Qu B, Kong H, Qin G, Liu S, et al. Rapid lateral-flow immunoassay for the quantum dot-based detection of puerarin. Biosens Bioelectron. 2016;81:358–62.Google Scholar
  27. 27.
    Li Y, Teng J, Zhu M, Lei Z, Zhong Y, Liu G, et al. MWCNTs based high sensitive lateral flow strip biosensor for rapid determination of aqueous mercury ions. Biosens Bioelectron. 2016;85:331.Google Scholar
  28. 28.
    Nan C, Ying S, Xu Y, Li Z, Luo Y, Huang K, et al. On-site detection of stacked genetically modified soybean based on event-specific TM-LAMP and a DNAzyme-lateral flow biosensor. Biosens Bioelectron. 2016;91:408–16.Google Scholar
  29. 29.
    Jiang T, Song Y, Du D, Liu X, Lin Y. Detection of p53 protein based on sesoporous Pt–Pd nanoparticles with enhanced peroxidase-like catalysis. ACS Sens. 2016;(6):717–24.Google Scholar
  30. 30.
    Fu Q, Liang J, Lan C, Zhou K, Shi C, Tang Y. Development of a novel dual-functional lateral-flow sensor for on-site detection of small molecule analytes. Sensors Actuators B Chem. 2014;203:683–9.CrossRefGoogle Scholar
  31. 31.
    Fu Q, Tang Y, Shi C, Zhang X, Xiang J, Liu X. A novel fluorescence-quenching immunochromatographic sensor for detection of the heavy metal chromium. Biosens Bioelectron. 2013;49(11):399–402.CrossRefGoogle Scholar
  32. 32.
    Teshima R, Kawase M, Tanaka T, Hirai K, Sato M, Sawada J, et al. Production and characterization of a specific monoclonal antibody against mycotoxin zearalenone. Curr Stud Hematol Blood Transfus. 1990;66(58):115.Google Scholar
  33. 33.
    Xie J, Zhang Q, Lee JY, Wang DI. The synthesis of SERS-active gold nanoflower tags for in vivo applications. ACS Nano. 2008;2(12):2473–80.CrossRefGoogle Scholar
  34. 34.
    Wang Y, Li Z, Hu D, Lin C-T, Li J, Lin Y. Aptamer/graphene oxide nanocomplex for in situ molecular probing in living cells. J Am Chem Soc. 2010;132(27):9274–6.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Bioengineering, Guangdong Province Engineering Research Center for Antibody Drug and ImmunoassayJinan UniversityGuangzhouChina

Personalised recommendations