Advertisement

Quantitative and rapid detection of amantadine and chloramphenicol based on various quantum dots with the same excitations

  • Sanlei Xie
  • Kai Wen
  • Sihan Wang
  • Jianyi Wang
  • Tao Peng
  • Ghulam Mujtaba Mari
  • Jiancheng Li
  • Zhanhui Wang
  • Xuezhi YuEmail author
  • Haiyang JiangEmail author
Research Paper
  • 30 Downloads

Abstract

Herein, we developed a sensitive and quantitative flow assay for simultaneous detection of amantadine (AMD) and chloramphenicol (CAP) in chicken samples based on different CdSe/ZnS quantum dots (QDs). In contrast to other reports, the QDs could be excited by the same excitations that lowered the requirements for the matching instruments. Under the optimal conditions, the strategy permitted sensitive detection of AMD and CAP in a linear range of 0.23 to 1.02 ng/g and 0.02 to 0.66 ng/g. The limits of detection were 0.18 ng/g and 0.016 ng/g, respectively. Moreover, the whole detection process could be completed within 20 min with no additional sophisticated instruments and complicated operations. Spiked samples were analyzed using both QD-based lateral flow immunoassay (QD-LFIA) and commercial ELISA kits with good correlation (R2 = 0.96). Moreover, this study laid the foundation and simplified the development of the requisite instrument.

Graphical abstract

Keywords

Simultaneous detection Multiplex LFIA Quantum dots Fluorescence 

Notes

Funding information

This research was supported by the National Natural Science Foundation of China (Nos. 31672600 and 31472236).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Human and/or animal participation

This article does not contain any studies with human participants performed by any of the authors.

Supplementary material

216_2019_1643_MOESM1_ESM.pdf (441 kb)
ESM 1 (PDF 440 kb)

References

  1. 1.
    Yu X, Zhang X, Wang Z, Jiang H, Lv Z, Shen J, et al. Universal simultaneous multiplex ELISA of small molecules in milk based on dual luciferases. Anal Chim Acta. 2018.  https://doi.org/10.1016/j.aca.2017.11.038.
  2. 2.
    Fu X, Chu Y, Zhao K, Li J, Deng A. Ultrasensitive detection of the β-adrenergic agonist brombuterol by a SERS-based lateral flow immunochromatographic assay using flower-like gold-silver core-shell nanoparticles. Microchim Acta. 2017.  https://doi.org/10.1007/s00604-017-2178-3.
  3. 3.
    Li X, Luo P, Tang S, Beier RC, Wu X, Yang L, et al. Development of an immunochromatographic strip test for rapid detection of melamine in raw milk, milk products and animal feed. J Agric Food Chem. 2011.  https://doi.org/10.1021/jf2008327.
  4. 4.
    Wiriyachaiporn N, Sirikett H, Maneeprakorn W, Dharakul T. Carbon nanotag based visual detection of influenza A virus by a lateral flow immunoassay. Microchim Acta. 2017.  https://doi.org/10.1007/s00604-017-2191-6.
  5. 5.
    Zhang X, Yu X, Wen K, Li C, Mujtaba Mari G, Jiang H, et al. Multiplex lateral flow immunoassays based on amorphous carbon nanoparticles for detecting three fusarium mycotoxins in maize. J Agric Food Chem. 2017.  https://doi.org/10.1021/acs.jafc.7b02827.
  6. 6.
    Zhou J, Zhu K, Xu F, Wang W, Jiang H, Wang Z, et al. Development of a microsphere-based fluorescence immunochromatographic assay for monitoring lincomycin in milk, honey, beef, and swine urine. J Agric Food Chem. 2014.  https://doi.org/10.1021/jf5029416.
  7. 7.
    Li X, Shen J, Wang Q, Gao S, Pei X, Jiang H, et al. Multi-residue fluorescent microspheres immunochromatographic assay for simultaneous determination of macrolides in raw milk. Anal Bioanal Chem. 2015.  https://doi.org/10.1007/s00216-015-9078-3.
  8. 8.
    Tang X, Li P, Zhang Q, Zhang Z, Zhang W, Jiang J. Time-resolved fluorescence immunochromatographic assay developed using two idiotypic nanobodies for rapid, quantitative, and simultaneous detection of aflatoxin and zearalenone in maize and its products. Anal Chem. 2017.  https://doi.org/10.1021/acs.analchem.7b02794.
  9. 9.
    Zhang Y, Ding X-L, Guo M-M, Han T-T, Huang Z-J, Shang H-T, et al. Quantitative and rapid detection of microcystin-LR using time-resolved fluorescence immunochromatographic assay based on europium nanospheres. Anal Methods. 2017;9:6430–4.  https://doi.org/10.1039/C7AY02036H.CrossRefGoogle Scholar
  10. 10.
    Algar WR, Tavares AJ, Krull UJ. Beyond labels: a review of the application of quantum dots as integrated components of assays, bioprobes, and biosensors utilizing optical transduction. Anal Chim Acta. 2010.Google Scholar
  11. 11.
    Paterson AS, Raja B, Mandadi V, Townsend B, Lee M, Buell A, et al. A low-cost smartphone-based platform for highly sensitive point-of-care testing with persistent luminescent phosphors. Lab Chip. 2017.  https://doi.org/10.1039/c6lc01167e.
  12. 12.
    Paterson AS, Raja B, Garvey G, Kolhatkar A, Hagstrom AEV, Kourentzi K, et al. Persistent luminescence strontium aluminate nanoparticles as reporters in lateral flow assays. Anal Chem. 2014.  https://doi.org/10.1021/ac5012624.
  13. 13.
    Wang DB, Tian B, Zhang ZP, Wang XY, Fleming J, Bi LJ, et al. Detection of Bacillus anthracis spores by super-paramagnetic lateral-flow immunoassays based on “Road Closure”. Biosens Bioelectron. 2015.  https://doi.org/10.1016/j.bios.2014.09.067.
  14. 14.
    Hu LM, Luo K, Xia J, Xu GM, Wu CH, Han JJ, et al. Advantages of time-resolved fluorescent nanobeads compared with fluorescent submicrospheres, quantum dots, and colloidal gold as label in lateral flow assays for detection of ractopamine. Biosens Bioelectron. 2017.  https://doi.org/10.1016/j.bios.2016.12.030.
  15. 15.
    Freeman R, Willner I. Optical molecular sensing with semiconductor quantum dots (QDs). Chem Soc Rev. 2012;41:4067–85.  https://doi.org/10.1039/C2CS15357B.CrossRefGoogle Scholar
  16. 16.
    Hao M, Zhang P, Li B, Liu X, Zhao Y, Tan H, et al. Development and evaluation of an up-converting phosphor technology-based lateral flow assay for the rapid, simultaneous detection of Vibrio cholerae serogroups O1 and O139. PLoS One. 2017;12:e0179937.  https://doi.org/10.1371/journal.pone.0179937.CrossRefGoogle Scholar
  17. 17.
    Wu S, Duan N, Zhu C, Ma X, Wang M, Wang Z. Magnetic nanobead-based immunoassay for the simultaneous detection of aflatoxin B1 and ochratoxin A using upconversion nanoparticles as multicolor labels. Biosens Bioelectron. 2011;30:35–42.  https://doi.org/10.1016/j.bios.2011.08.023.CrossRefGoogle Scholar
  18. 18.
    Fraga M, Vilariño N, Louzao MC, Rodríguez P, Campbell K, Elliott CT, et al. Multidetection of paralytic, diarrheic, and amnesic shellfish toxins by an inhibition immunoassay using a microsphere-flow cytometry system. Anal Chem. 2013;85:7794–802.  https://doi.org/10.1021/ac401146m.CrossRefGoogle Scholar
  19. 19.
    Petryayeva E, Algar WR, Medintz IL. Quantum dots in bioanalysis: a review of applications across various platforms for fluorescence spectroscopy and imaging. Appl Spectrosc. 2013.Google Scholar
  20. 20.
    Ma M, Wen K, Beier RC, Eremin SA, Li C, Zhang S, et al. Chemiluminescence resonance energy transfer competitive immunoassay employing hapten-functionalized quantum dots for the detection of sulfamethazine. ACS Appl Mater Interfaces. 2016.  https://doi.org/10.1021/acsami.6b04171.
  21. 21.
    Wu P, Yan X-P. Doped quantum dots for chemo/biosensing and bioimaging. Chem Soc Rev. 2013;42:5489–521.  https://doi.org/10.1039/C3CS60017C.CrossRefGoogle Scholar
  22. 22.
    Zhang Y h, Zhang H s, Ma M, Guo X f, Wang H. The influence of ligands on the preparation and optical properties of water-soluble CdTe quantum dots. Appl Surf Sci. 2009.  https://doi.org/10.1016/j.apsusc.2008.09.009.
  23. 23.
    Zhu Y, Cui S, Chen X, Xu W, Zhou P, Wang Y, et al. Efficient energy transfer from inserted CdTe quantum dots to YVO4:Eu3+ inverse opals: a novel strategy to improve and expand visible excitation of rare earth ions. Nanoscale. 2014.  https://doi.org/10.1039/c4nr01845a.
  24. 24.
    Hu J, Liu M, Zhang C. Integration of isothermal amplification with quantum dot-based fluorescence resonance energy transfer for simultaneous detection of multiple microRNAs. Chem Sci. 2018;9:4258–67.  https://doi.org/10.1039/C8SC00832A.CrossRefGoogle Scholar
  25. 25.
    Jacinto MJ, Trabuco JRC, Vu BV, Garvey G, Khodadady M, Azevedo AM, et al. Enhancement of lateral flow assay performance by electromagnetic relocation of reporter particles. PLoS One. 2018.  https://doi.org/10.1371/journal.pone.0186782.
  26. 26.
    Shi X, Wu A, Zheng S, Li R, Zhang D. Molecularly imprinted polymer microspheres for solid-phase extraction of chloramphenicol residues in foods. J Chromatogr B Anal Technol Biomed Life Sci. 2007.  https://doi.org/10.1016/j.jchromb.2006.10.057.
  27. 27.
    Mitchell JM, Griffiths MW, McEwen SA, McNab WB, Yee AJ. Antimicrobial drug residues in milk and meat: causes, concerns, prevalence, regulations, tests, and test performance. J Food Prot. 1998.  https://doi.org/10.4315/0362-028X-61.6.742.
  28. 28.
    Tao X, Zhou S, Yuan X, Li H. Determination of chloramphenicol in milk by ten chemiluminescent immunoassays: influence of assay format applied. Anal Methods. 2016.  https://doi.org/10.1039/c6ay00792a.
  29. 29.
    Tao X, Jiang H, Zhu J, Wang X, Wang Z, Niu L, et al. An ultrasensitive chemiluminescent ELISA for determination of chloramphenicol in milk, milk powder, honey, eggs and chicken muscle. Food Agric Immunol. 2014.  https://doi.org/10.1080/09540105.2012.753513.
  30. 30.
    Wang Z, Wen K, Zhang X, Li X, Wang Z, Shen J, et al. New hapten synthesis, antibody production, and indirect competitive enzyme-linked immunosorbent assay for amantadine in chicken muscle. Food Anal Methods. 2018.  https://doi.org/10.1007/s12161-017-1000-5.
  31. 31.
    Tao X, Jiang H, Yu X, Zhu J, Wang X, Wang Z, et al. An ultrasensitive chemiluminescence immunoassay of chloramphenicol based on gold nanoparticles and magnetic beads. Drug Test Anal. 2013.  https://doi.org/10.1002/dta.1465.
  32. 32.
    Liang RQ, Li W, Li Y, Tan C y, Li JX, Jin YX, et al. An oligonucleotide microarray for microRNA expression analysis based on labeling RNA with quantum dot and nanogold probe. Nucleic Acids Res. 2005.  https://doi.org/10.1093/nar/gni019.
  33. 33.
    Wang Z, Li H, Li C, Yu Q, Shen J, De Saeger S. Development and application of a quantitative fluorescence-based immunochromatographic assay for fumonisin b1 in maize. J Agric Food Chem. 2014.  https://doi.org/10.1021/jf5017219.
  34. 34.
    Taranova NA, Berlina AN, Zherdev AV, Dzantiev BB. “Traffic light” immunochromatographic test based on multicolor quantum dots for the simultaneous detection of several antibiotics in milk. Biosens Bioelectron. 2015.  https://doi.org/10.1016/j.bios.2014.07.049.
  35. 35.
    Kolosova AY, De Saeger S, Sibanda L, Verheijen R, Van Peteghem C. Development of a colloidal gold-based lateral-flow immunoassay for the rapid simultaneous detection of zearalenone and deoxynivalenol. Anal Bioanal Chem. 2007.  https://doi.org/10.1007/s00216-007-1642-z.
  36. 36.
    Xia X, Xu Y, Ke R, Zhang H, Zou M, Yang W, et al. A highly sensitive europium nanoparticlebased lateral flow immunoassay for detection of chloramphenicol residue. Anal Bioanal Chem. 2013;405(23):7541–7544.  https://doi.org/10.1007/s00216-013-7210-9.
  37. 37.
    Berlina AN, Taranova NA, Zherdev AV, Vengerov YY, Dzantiev BB. Quantum dot-based lateral flow immunoassay for detection of chloramphenicol in milk. Anal Bioanal Chem. 2013.  https://doi.org/10.1007/s00216-013-6876-3.
  38. 38.
    Bai Z, Luo Y, Xu W, Gao H, Han P, Liu T, et al. Development of a new fluorescence immunochromatography strip for detection of chloramphenicol residues in chicken muscles. J Sci Food Agric. 2014;93(15):3743–3747.  https://doi.org/10.1002/jsfa.6232.
  39. 39.
    Byzova NA, Zvereva EA, Zherdev AV, Eremin SA, Dzantiev BB. Rapid pretreatment-free immunochromatographic assay of chloramphenicol in milk. Talanta. 2010.  https://doi.org/10.1016/j.talanta.2010.01.025.
  40. 40.
    Xu N, Xu L, Ma W, Liu L, Kuang H, Xu C. An ultrasensitive immunochromatographic assay for non-pretreatment monitoring of chloramphenicol in raw milk. Food Agric Immunol. 2015.  https://doi.org/10.1080/09540105.2014.998640.
  41. 41.
    Xing C, Liu L, Song S, Feng M, Kuang H, Xu C. Ultrasensitive immunochromatographic assay for the simultaneous detection of five chemicals in drinking water. Biosens Bioelectron. 2015;66(66C):445–453.  https://doi.org/10.1016/j.bios.2014.12.004.
  42. 42.
    Zvereva EA, Byzova NA, Sveshnikov PG, Zherdev AV, Dzantiev BB. Cut-off on demand: adjustment of the threshold level of an immunochromatographic assay for chloramphenicol. Anal Methods. 2015.  https://doi.org/10.1039/c5ay00835b.
  43. 43.
    Wang J, Wang Q, Zheng Y, Peng T, Yao K, Xie S, et al. Development of a quantitative fluorescence-based lateral flow immunoassay for determination of chloramphenicol, thiamphenicol and florfenicol in milk. Food Agric Immunol. 2017.  https://doi.org/10.1080/09540105.2017.1359498.
  44. 44.
    Guo L, Song S, Liu L, Peng J, Kuang H, Xu C. Comparison of an immunochromatographic strip with ELISA for simultaneous detection of thiamphenicol, florfenicol, and chloramphenicol in food samples. Biomed Chromatogr. 2015;29(9):1432–1439.  https://doi.org/10.1002/bmc.3442.
  45. 45.
    Zhou C, Zhang X, Huang X, Guo X, Cai Q, Zhu S. Rapid detection of chloramphenicol residues in aquatic products using colloidal gold immunochromatographic assay. Sensors (Switzerland). 2014.  https://doi.org/10.3390/s141121872.
  46. 46.
    Zhou J, Nie W, Chen Y, Yang C, Gong L, Zhang C, et al. Quadruplex gold immunochromatogaraphic assay for four families of antibiotic residues in milk. Food Chem. 2018;256(1):304–310.  https://doi.org/10.1016/j.foodchem.2018.02.002.
  47. 47.
    Wu S, Zhu F, Hu L, Xia J, Xu G, Liu D, et al. Development of a competitive immunochromatographic assay for the sensitive detection of amantadine in chicken muscle. Food Chem. 2017;232(1):770–776.  https://doi.org/10.1016/j.foodchem.2017.04.058.
  48. 48.
    Xu L, Peng S, Liu L, Song S, Kuang H, Xu C, Development of sensitive and fast immunoassays for amantadine detection. Food Agric Immunol. 2016;27(5):678–688.  https://doi.org/10.1080/09540105.2016.1148667.
  49. 49.
    Kingeter LM, Schaefer BC. Expanding the multicolor capabilities of basic confocal microscopes by employing red and near-infrared quantum dot conjugates. BMC Biotechnol. 2009.  https://doi.org/10.1186/1472-6750-9-49.

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Sanlei Xie
    • 1
    • 2
  • Kai Wen
    • 1
    • 2
  • Sihan Wang
    • 1
    • 2
  • Jianyi Wang
    • 1
    • 2
  • Tao Peng
    • 1
    • 2
  • Ghulam Mujtaba Mari
    • 1
    • 2
  • Jiancheng Li
    • 1
    • 2
  • Zhanhui Wang
    • 1
    • 2
  • Xuezhi Yu
    • 1
    • 2
    Email author
  • Haiyang Jiang
    • 1
    • 2
    Email author
  1. 1.Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary MedicineChina Agricultural UniversityBeijingChina
  2. 2.Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, Beijing Laboratory for Food Quality and SafetyBeijingChina

Personalised recommendations