Advertisement

Metabolomic and lipidomic characterization of Oxalobacter formigenes strains HC1 and OxWR by UHPLC-HRMS

  • Casey A. Chamberlain
  • Marguerite Hatch
  • Timothy J. GarrettEmail author
Research Paper
Part of the following topical collections:
  1. Young Investigators in (Bio-)Analytical Chemistry

Abstract

Diseases of oxalate, such as nephrolithiasis and primary hyperoxaluria, affect a significant portion of the US population and have limited treatment options. Oxalobacter formigenes, an obligate oxalotrophic bacterium in the mammalian intestine, has generated great interest as a potential probiotic or therapeutic treatment for oxalate-related conditions due to its ability to degrade both exogenous (dietary) and endogenous (metabolic) oxalate, lowering the risk of hyperoxaluria/hyperoxalemia. Although all oxalotrophs degrade dietary oxalate, Oxalobacter formigenes is the only species shown to initiate intestinal oxalate secretion to draw upon endogenous, circulating oxalate for consumption. Evidence suggests that Oxalobacter regulates oxalate transport proteins in the intestinal epithelium using an unidentified secreted bioactive compound, but the mechanism of this function remains elusive. It is essential to gain an understanding of the biochemical relationship between Oxalobacter and the host intestinal epithelium for this microbe to progress as a potential remedy for oxalate diseases. This investigation includes the first profiling of the metabolome and lipidome of Oxalobacter formigenes, specifically the human strain HC1 and rat strain OxWR, the only two strains shown thus far to initiate net intestinal oxalate secretion across native gut epithelia. This study was performed using untargeted and targeted metabolomics and lipidomics methodologies utilizing ultra-high-performance liquid chromatography-mass spectrometry. We report our findings that the metabolic profiles of these strains, although largely conserved, show significant differences in their expression of many compounds. Several strain-specific features were also detected. Discussed are trends in the whole metabolic profile as well as in individual features, both identified and unidentified.

Graphical abstract

Keywords

Metabolomics Lipidomics Oxalobacter formigenes Mass spectrometry LC-MS Oxalate Nephrolithiasis Hyperoxaluria 

Abbreviations

BMP

Bis(monoacylglycero)phosphate

CER

Ceramide

CL

Cardiolipin

CoQ10

Coenzyme Q10

DG

Diacylglycerol

DMPE

Dimethylphosphatidylethanolamine

FA

Formic acid

LPC

Lysophosphatidylcholine

LPE

Lysophosphatidylethanolamine

LSM

Lysosphingomyelin

OxPE

Oxidized phosphatidylethanolamine

PAzePC

1-Palmitoyl-2-azelaoyl-sn-glycero-3-phosphocholine

PC

Phosphatidylcholine

PE

Phosphatidylethanolamine

PG

Phosphatidylglycerol

PI

Phosphatidylinositol

PS

Phosphatidylserine

SM

Sphingomyelin

SO

Sphingosine

TG

Triacylglycerol

Notes

Acknowledgments

The authors would like to acknowledge Dr. Cory A. Leonard, Department of Pathology, Immunology and Laboratory Medicine, University of Florida, for her assistance with sample generation for this experiment, including media preparation and cell culture, harvest, and lysis. Also to be acknowledged are Dr. Jeremy P. Koelmel, Department of Pathology, Immunology and Laboratory Medicine, University of Florida, and Vanessa Y. Rubio, Department of Chemistry, University of Florida, for their contributions with figure generation for the lipidomics analysis and graphical abstract, respectively.

Funding information

This work was funded by the National Institutes of Health grant 2R01DK088892-05A1.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflicts of interest.

Supplementary material

216_2019_1639_MOESM1_ESM.pdf (1.6 mb)
ESM 1 (PDF 1626 kb)
216_2019_1639_MOESM2_ESM.xlsx (14 kb)
ESM 2 (XLSX 13 kb)

References

  1. 1.
    Scales CD, Smith AC, Hanley JM, Saigal CS, Project UDiA. Prevalence of kidney stones in the United States. Eur Urol. 2012;62(1):160–5.  https://doi.org/10.1016/j.eururo.2012.03.052.CrossRefGoogle Scholar
  2. 2.
    Worcester EM, Coe FL. Nephrolithiasis. Prim Care. 2008;35(2):369–91, vii.  https://doi.org/10.1016/j.pop.2008.01.005.CrossRefGoogle Scholar
  3. 3.
    Holmes RP, Goodman HO, Assimos DG. Contribution of dietary oxalate to urinary oxalate excretion. Kidney Int. 2001;59(1):270–6.  https://doi.org/10.1046/j.1523-1755.2001.00488.x.CrossRefGoogle Scholar
  4. 4.
    Holmes RP, Assimos DG. Glyoxylate synthesis, and its modulation and influence on oxalate synthesis. J Urol. 1998;160(5):1617–24.CrossRefGoogle Scholar
  5. 5.
    Khan SR, Pearle MS, Robertson WG, Gambaro G, Canales BK, Doizi S, et al. Kidney stones. Nat Rev Dis Primers. 2017;3:17001.  https://doi.org/10.1038/nrdp.2017.1.CrossRefGoogle Scholar
  6. 6.
    Bouzidi H, Majdoub A, Daudon M, Najjar MF. Primary hyperoxaluria: a review. Nephrol Ther. 2016;12(6):431–6.  https://doi.org/10.1016/j.nephro.2016.03.005.CrossRefGoogle Scholar
  7. 7.
    Hatch M. Gut microbiota and oxalate homeostasis. Ann Transl Med. 2017;5(2):36.  https://doi.org/10.21037/atm.2016.12.70.CrossRefGoogle Scholar
  8. 8.
    Oppici E, Montioli R, Cellini B. Liver peroxisomal alanine:glyoxylate aminotransferase and the effects of mutations associated with primary hyperoxaluria type I: an overview. Biochim Biophys Acta. 2015;1854(9):1212–9.  https://doi.org/10.1016/j.bbapap.2014.12.029.CrossRefGoogle Scholar
  9. 9.
    Dawson KA, Allison MJ, Hartman PA. Isolation and some characteristics of anaerobic oxalate-degrading bacteria from the rumen. Appl Environ Microbiol. 1980;40(4):833–9.Google Scholar
  10. 10.
    Allison MJ, Dawson KA, Mayberry WR, Foss JG. Oxalobacter formigenes gen. nov., sp. nov.: oxalate-degrading anaerobes that inhabit the gastrointestinal tract. Arch Microbiol. 1985;141(1):1–7.CrossRefGoogle Scholar
  11. 11.
    Hatch M, Cornelius J, Allison M, Sidhu H, Peck A, Freel RW. Oxalobacter sp. reduces urinary oxalate excretion by promoting enteric oxalate secretion. Kidney Int. 2006;69(4):691–8.  https://doi.org/10.1038/sj.ki.5000162.CrossRefGoogle Scholar
  12. 12.
    Hatch M, Gjymishka A, Salido EC, Allison MJ, Freel RW. Enteric oxalate elimination is induced and oxalate is normalized in a mouse model of primary hyperoxaluria following intestinal colonization with Oxalobacter. Am J Physiol Gastrointest Liver Physiol. 2011;300(3):G461–9.  https://doi.org/10.1152/ajpgi.00434.2010.CrossRefGoogle Scholar
  13. 13.
    Liu H, Garrett TJ, Tayyari F, Gu L. Profiling the metabolome changes caused by cranberry procyanidins in plasma of female rats using (1) H NMR and UHPLC-Q-Orbitrap-HRMS global metabolomics approaches. Mol Nutr Food Res. 2015;59(11):2107–18.  https://doi.org/10.1002/mnfr.201500236.CrossRefGoogle Scholar
  14. 14.
    Folch J, Lees M, Sloane Stanley GH. A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem. 1957;226(1):497–509.Google Scholar
  15. 15.
    Koelmel JP, Kroeger NM, Gill EL, Ulmer CZ, Bowden JA, Patterson RE, et al. Expanding lipidome coverage using LC-MS/MS data-dependent acquisition with automated exclusion list generation. J Am Soc Mass Spectrom. 2017;28(5):908–17.  https://doi.org/10.1007/s13361-017-1608-0.CrossRefGoogle Scholar
  16. 16.
    He L, Diedrich J, Chu YY, Yates JR. Extracting accurate precursor information for tandem mass spectra by RawConverter. Anal Chem. 2015;87(22):11361–7.  https://doi.org/10.1021/acs.analchem.5b02721.CrossRefGoogle Scholar
  17. 17.
    Kessner D, Chambers M, Burke R, Agus D, Mallick P. ProteoWizard: open source software for rapid proteomics tools development. Bioinformatics. 2008;24(21):2534–6.  https://doi.org/10.1093/bioinformatics/btn323.CrossRefGoogle Scholar
  18. 18.
    Chambers MC, Maclean B, Burke R, Amodei D, Ruderman DL, Neumann S, et al. A cross-platform toolkit for mass spectrometry and proteomics. Nat Biotechnol. 2012;30(10):918–20.  https://doi.org/10.1038/nbt.2377.CrossRefGoogle Scholar
  19. 19.
    Pluskal T, Castillo S, Villar-Briones A, Oresic M. MZmine 2: modular framework for processing, visualizing, and analyzing mass spectrometry-based molecular profile data. BMC Bioinformatics. 2010;11:395.  https://doi.org/10.1186/1471-2105-11-395.CrossRefGoogle Scholar
  20. 20.
    Wehrens R, Hageman JA, van Eeuwijk F, Kooke R, Flood PJ, Wijnker E, et al. Improved batch correction in untargeted MS-based metabolomics. Metabolomics. 2016;12:88.  https://doi.org/10.1007/s11306-016-1015-8.CrossRefGoogle Scholar
  21. 21.
    Koelmel JP, Kroeger NM, Ulmer CZ, Bowden JA, Patterson RE, Cochran JA, et al. LipidMatch: an automated workflow for rule-based lipid identification using untargeted high-resolution tandem mass spectrometry data. BMC Bioinformatics. 2017;18(1):331.  https://doi.org/10.1186/s12859-017-1744-3.CrossRefGoogle Scholar
  22. 22.
    Chong J, Soufan O, Li C, Caraus I, Li S, Bourque G, et al. MetaboAnalyst 4.0: towards more transparent and integrative metabolomics analysis. Nucleic Acids Res. 2018;46(W1):W486–W94.  https://doi.org/10.1093/nar/gky310.CrossRefGoogle Scholar
  23. 23.
    van den Berg RA, Hoefsloot HC, Westerhuis JA, Smilde AK, van der Werf MJ. Centering, scaling, and transformations: improving the biological information content of metabolomics data. BMC Genomics. 2006;7:142.  https://doi.org/10.1186/1471-2164-7-142.CrossRefGoogle Scholar
  24. 24.
    Holm S. A simple sequentially rejective multiple test procedure. Scand J Stat. 1979;6(2):65–70.Google Scholar
  25. 25.
    Hatch M, Allison MJ, Yu F, Farmerie W. Genome sequence of Oxalobacter formigenes strain HC-1. Genome Announc. 2017;5(27).  https://doi.org/10.1128/genomeA.00533-17.
  26. 26.
    Hatch M, Allison MJ, Yu F, Farmerie W. Genome sequence of Oxalobacter formigenes strain OXCC13. Genome Announc. 2017;5(28).  https://doi.org/10.1128/genomeA.00534-17.
  27. 27.
    Gomelsky M, Galperin MY. Bacterial second messengers, cGMP and c-di-GMP, in a quest for regulatory dominance. EMBO J. 2013;32(18):2421–3.  https://doi.org/10.1038/emboj.2013.193.CrossRefGoogle Scholar
  28. 28.
    Gomelsky M. cAMP, c-di-GMP, c-di-AMP and now cGMP: bacteria use them all! Mol Microbiol. 2011;79(3):562–5.  https://doi.org/10.1111/j.1365-2958.2010.07514.x.CrossRefGoogle Scholar
  29. 29.
    An SQ, Chin KH, Febrer M, McCarthy Y, Yang JG, Liu CL, et al. A cyclic GMP-dependent signalling pathway regulates bacterial phytopathogenesis. EMBO J. 2013;32(18):2430–8.  https://doi.org/10.1038/emboj.2013.165.CrossRefGoogle Scholar
  30. 30.
    Marden JN, Dong Q, Roychowdhury S, Berleman JE, Bauer CE. Cyclic GMP controls Rhodospirillum centenum cyst development. Mol Microbiol. 2011;79(3):600–15.  https://doi.org/10.1111/j.1365-2958.2010.07513.x.CrossRefGoogle Scholar
  31. 31.
    Jonas K, Melefors O, Römling U. Regulation of c-di-GMP metabolism in biofilms. Future Microbiol. 2009;4(3):341–58.  https://doi.org/10.2217/fmb.09.7.CrossRefGoogle Scholar
  32. 32.
    Allen F, Pon A, Wilson M, Greiner R, Wishart D. CFM-ID: a web server for annotation, spectrum prediction and metabolite identification from tandem mass spectra. Nucleic Acids Research. 2014;42:(W1)W94–W99.Google Scholar
  33. 33.
    Guijas C, Montenegro-Burke JR, Domingo-Almenara X, Palermo A, Warth B, Hermann G, et al. METLIN: a technology platform for identifying knowns and unknowns. Anal Chem. 2018;90(5):3156–64.  https://doi.org/10.1021/acs.analchem.7b04424.CrossRefGoogle Scholar
  34. 34.
    Wishart DS, Feunang YD, Marcu A, Guo AC, Liang K, Vázquez-Fresno R, et al. HMDB 4.0: the human metabolome database for 2018. Nucleic Acids Res. 2018;46(D1):D608–D17.  https://doi.org/10.1093/nar/gkx1089.CrossRefGoogle Scholar
  35. 35.
    Gil de la Fuente A, Godzien J, Fernández López M, Rupérez FJ, Barbas C, Otero A. Knowledge-based metabolite annotation tool: CEU Mass Mediator. J Pharm Biomed Anal. 2018;154:138–49.  https://doi.org/10.1016/j.jpba.2018.02.046.CrossRefGoogle Scholar
  36. 36.
    Parsons JB, Rock CO. Bacterial lipids: metabolism and membrane homeostasis. Prog Lipid Res. 2013;52(3):249–76.  https://doi.org/10.1016/j.plipres.2013.02.002.CrossRefGoogle Scholar
  37. 37.
    Qiu X, Choudhry AE, Janson CA, Grooms M, Daines RA, Lonsdale JT, et al. Crystal structure and substrate specificity of the beta-ketoacyl-acyl carrier protein synthase III (FabH) from Staphylococcus aureus. Protein Sci. 2005;14(8):2087–94.  https://doi.org/10.1110/ps.051501605.CrossRefGoogle Scholar
  38. 38.
    Jackowski S, Murphy CM, Cronan JE, Rock CO. Acetoacetyl-acyl carrier protein synthase. A target for the antibiotic thiolactomycin. J Biol Chem. 1989;264(13):7624–9.Google Scholar
  39. 39.
    Khandekar SS, Gentry DR, Van Aller GS, Warren P, Xiang H, Silverman C, et al. Identification, substrate specificity, and inhibition of the Streptococcus pneumoniae beta-ketoacyl-acyl carrier protein synthase III (FabH). J Biol Chem. 2001;276(32):30024–30.  https://doi.org/10.1074/jbc.M101769200.CrossRefGoogle Scholar
  40. 40.
    Reynolds CM, Kalb SR, Cotter RJ, Raetz CR. A phosphoethanolamine transferase specific for the outer 3-deoxy-D-manno-octulosonic acid residue of Escherichia coli lipopolysaccharide. Identification of the eptB gene and Ca2+ hypersensitivity of an eptB deletion mutant. J Biol Chem. 2005;280(22):21202–11.  https://doi.org/10.1074/jbc.M500964200.CrossRefGoogle Scholar
  41. 41.
    Choi KH, Heath RJ, Rock CO. beta-ketoacyl-acyl carrier protein synthase III (FabH) is a determining factor in branched-chain fatty acid biosynthesis. J Bacteriol. 2000;182(2):365–70.CrossRefGoogle Scholar
  42. 42.
    He X, Reynolds KA. Purification, characterization, and identification of novel inhibitors of the beta-ketoacyl-acyl carrier protein synthase III (FabH) from Staphylococcus aureus. Antimicrob Agents Chemother. 2002;46(5):1310–8.CrossRefGoogle Scholar
  43. 43.
    Sohlenkamp C, Geiger O. Bacterial membrane lipids: diversity in structures and pathways. FEMS Microbiol Rev. 2016;40(1):133–59.  https://doi.org/10.1093/femsre/fuv008.CrossRefGoogle Scholar
  44. 44.
    Koebnik R, Locher KP, Van Gelder P. Structure and function of bacterial outer membrane proteins: barrels in a nutshell. Mol Microbiol. 2000;37(2):239–53.CrossRefGoogle Scholar
  45. 45.
    Epand RM, Epand RF. Lipid domains in bacterial membranes and the action of antimicrobial agents. Biochim Biophys Acta. 2009;1788(1):289–94.  https://doi.org/10.1016/j.bbamem.2008.08.023.CrossRefGoogle Scholar
  46. 46.
    Goldfine H. Bacterial-membranes and lipid packing theory. J Lipid Res. 1984;25(13):1501–7.Google Scholar
  47. 47.
    López-Lara IM, Sohlenkamp C, Geiger O. Membrane lipids in plant-associated bacteria: their biosyntheses and possible functions. Mol Plant-Microbe Interact. 2003;16(7):567–79.  https://doi.org/10.1094/MPMI.2003.16.7.567.CrossRefGoogle Scholar
  48. 48.
    Goldfine H. Lipids of Prokaryotes - structure and distribution. Curr Topics Membr Transport. 1982;17:1–43.CrossRefGoogle Scholar
  49. 49.
    Lopez-Lara I, Geiger O. Novel pathway for phosphatidylcholine biosynthesis in bacteria associated with eukaryotes. J Biotechnol. 2001;91(2–3):211–21.  https://doi.org/10.1016/S0168-1656(01)00331-5.CrossRefGoogle Scholar
  50. 50.
    Sohlenkamp C, Lopez-Lara I, Geiger O. Biosynthesis of phosphatidylcholine in bacteria. Prog Lipid Res. 2003;42(2):115–62.  https://doi.org/10.1016/S0163-7827(02)00050-4.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Casey A. Chamberlain
    • 1
  • Marguerite Hatch
    • 1
  • Timothy J. Garrett
    • 1
    Email author
  1. 1.Department of Pathology, Immunology and Laboratory MedicineUniversity of FloridaGainesvilleUSA

Personalised recommendations