Advertisement

Enhanced electrochemiluminescent brightness and stability of porphyrins by supramolecular pinning and pinching for sensitive zinc detection

  • Chenyu Zheng
  • Yufeng Sheng
  • Yong Liu
  • Ying WanEmail author
  • Guang Liu
  • Xutong Zhang
  • Meng Yang
  • Kai Kang
  • Jingping Liu
  • Kefeng MaEmail author
  • Shengyuan DengEmail author
Research Paper
Part of the following topical collections:
  1. Young Investigators in (Bio-)Analytical Chemistry

Abstract

Ultrasensitive electrochemiluminescence (ECL) detection can benefit substantially from the rational configuration of emitter−enhancer stereochemistry. Here, using zinc(II) meso-5,10,15,20-tetra(4-sulfonatophenyl)porphyrin (ZnTSPP) as a model, we demonstrate that both the ECL intensity and the photostability of this emitter were significantly improved when it was trapped in pyridyl-bridged β-cyclodextrin dimer (Py(CD)2); a synthetic enhancer that is ECL inactive. Through NMR characterization, we confirmed that ZnTSPP formed a clam-like inclusion complex involving pinning and pinching forces from the biocompatible container Py(CD)2. Up to a threefold increase in the ECL brightness of ZnTSPP was witnessed when it was encapsulated in β-CD. Absorption and emission spectroscopic data revealed that both the extended excitation lifetime and the restricted mobility of the guest contributed to the observed improvement in signal transduction within the host molecule. This bioinspired entrapment also led to a marked boost in ECL stability. With the aid of the newly identified coreactant H2O2, the hollow TSPP@Py(CD)2 system was employed to create a Zn2+-selective probe that was capable of sensitive and accurate zinc detection. The observed increase in ECL conversion and enhanced photophysical properties of this compact supramolecular assembly render it a novel template for enhancing ECL in analytical applications.

Graphical abstract

Keywords

ECL-active porphyrins Cyclodextrin dimer Host–guest inclusion Axial ligation Coreactant Zinc-specific sensor 

Notes

Acknowledgements

This research was supported by the National Natural Science Foundation of China (grant nos. 21775072, 21874071), Outstanding Youth Foundation of Jiangsu Province (BK20170093), Qing Lan Project of Jiangsu Province, and the Fundamental Research Funds for the Central Universities (30916011201, 30916011204, 309171A8803). We express our appreciation to Dr. Yi Lu (Fasteur Biotechnology Corporation, Beijing) for kindly providing technical support for the instrumentation.

Compliance with ethical standards

Conflict of interest

The authors have no conflict of interest. This research did not involve any human participants or animals. All authors have been informed about this paper and consented to its publication.

Supplementary material

216_2019_1634_MOESM1_ESM.pdf (991 kb)
ESM 1 (PDF 990 kb)

References

  1. 1.
    Li LL, Chen Y, Zhu JJ. Recent advances in electrochemiluminescence analysis. Anal Chem. 2017;89(1):358–71.  https://doi.org/10.1021/acs.analchem.6b04675.CrossRefGoogle Scholar
  2. 2.
    Chen Y, Zhou SW, Li LL, Zhu JJ. Nanomaterials-based sensitive electrochemiluminescence biosensing. Nano Today. 2017;12:98–115.  https://doi.org/10.1016/j.nantod.2016.12.013.CrossRefGoogle Scholar
  3. 3.
    Valenti G, Rampazzo E, Kesarkar S, Genovese D, Fiorani A, Zanut A, et al. Electrogenerated chemiluminescence from metal complexes-based nanoparticles for highly sensitive sensors applications. Coordin Chem Rev. 2018;367:65–81.  https://doi.org/10.1016/j.ccr.2018.04.011.CrossRefGoogle Scholar
  4. 4.
    Fang Y, Yang X, Chen T, Xu G, Liu M, Liu J, et al. Two-dimensional titanium carbide (MXene)-based solid-state electrochemiluminescent sensor for label-free single-nucleotide mismatch discrimination in human urine. Sen Actuat B: Chem. 2018;263:400–7.  https://doi.org/10.1016/j.snb.2018.02.102.CrossRefGoogle Scholar
  5. 5.
    Kesarkar S, Rampazzo E, Zanut A, Palomba F, Marcaccio M, Valenti G, et al. Dye-doped nanomaterials: strategic design and role in electrochemiluminescence. Curr Opin Electrochem. 2018;7:130–7.  https://doi.org/10.1016/j.coelec.2017.11.012.CrossRefGoogle Scholar
  6. 6.
    Fang C, Li HL, Yan JL, Guo HM, Tu YF. Progress of the electrochemiluminescence biosensing strategy for clinical diagnosis with luminol as the sensing probe. Chem Aust. 2017;4(7):1587–93.  https://doi.org/10.1002/celc.201700465.Google Scholar
  7. 7.
    Chinnadayyala SR, Park J, Le HTN, Santhosh M, Kadam AN, Cho S. Recent advances in microfluidic paper-based electrochemiluminescence analytical devices for point-of-care testing applications. Biosens Bioelectron. 2019;126:68–81.  https://doi.org/10.1016/j.bios.2018.10.038.CrossRefGoogle Scholar
  8. 8.
    Voci S, Goudeau B, Valenti G, Lesch A, Jović M, Rapino S, et al. Surface-confined electrochemiluminescence microscopy of cell membranes. J Am Chem Soc. 2018;140(44):14753–60.  https://doi.org/10.1021/jacs.8b08080.CrossRefGoogle Scholar
  9. 9.
    Khonsari YN, Sun SG. Recent trends in electrochemiluminescence aptasensors and their applications. Chem Commun. 2017;53(65):9042–54.  https://doi.org/10.1039/c7cc04300g.CrossRefGoogle Scholar
  10. 10.
    Huang X, Xu D, Chen J, Liu J, Li Y, Song J, et al. Smartphone-based analytical biosensors. Analyst. 2018;143(22):5339–51.  https://doi.org/10.1039/c8an01269e.CrossRefGoogle Scholar
  11. 11.
    Jiang JJ, Lin XY, Ding D, Diao GW. Graphitic-phase carbon nitride-based electrochemiluminescence sensing analyses: recent advances and perspectives. RSC Adv. 2018;8(35):19369–80.  https://doi.org/10.1039/c8ra02221f.CrossRefGoogle Scholar
  12. 12.
    Chen XQ, Liu Y, Ma Q. Recent advances in quantum dot-based electrochemiluminescence sensors. J Mater Chem C. 2018;6(5):942–59.  https://doi.org/10.1039/c7tc05474b.CrossRefGoogle Scholar
  13. 13.
    Martir DR, Zysman-Colman E. Supramolecular iridium(III) assemblies. Coordin Chem Rev. 2018;364:86–117.  https://doi.org/10.1016/j.ccr.2018.03.016.CrossRefGoogle Scholar
  14. 14.
    Feng YQ, Wang NN, Ju HX. Highly efficient electrochemiluminescence of cyanovinylene-contained polymer dots in aqueous medium and its application in imaging analysis. Anal Chem. 2018;90:1202–8.  https://doi.org/10.1021/acs.analchem.7b03821.CrossRefGoogle Scholar
  15. 15.
    Dick JE, Renault C, Kim BK, Bard AJ. Electrogenerated chemiluminescence of common organic luminophores in water using an emulsion system. J Am Chem Soc. 2014;136(39):13546–9.  https://doi.org/10.1021/ja507198r.CrossRefGoogle Scholar
  16. 16.
    Deng S, Zhang T, Ji X, Wan Y, Xin P, Shan D, et al. Detection of zinc finger protein (EGR1) based on electrogenerated chemiluminescence from singlet oxygen produced in a nanoclay-supported porphyrin environment. Anal Chem. 2015;87(18):9155–62.  https://doi.org/10.1021/acs.analchem.5b01318.
  17. 17.
    Watanabe K, Kitagishi H, Kano K. Supramolecular iron porphyrin/cyclodextrin dimer complex that mimics the functions of hemoglobin and methemoglobin. Angew Chem Int Ed. 2013;52(27):6894–7.  https://doi.org/10.1002/anie.201302470.CrossRefGoogle Scholar
  18. 18.
    Kano K, Kitagishi H, Mabuchi T, Kodera M, Hirota S. A myoglobin functional model composed of a ferrous porphyrin and a cyclodextrin dimer with an imidazole inker. Chem Asian J. 2006;1(3):358–66.  https://doi.org/10.1002/asia.200600070.CrossRefGoogle Scholar
  19. 19.
    Yao C, Song H, Wan Y, Ma K, Zheng C, Cui H, et al. Electro-photodynamic visualization of singlet oxygen induced by zinc porphyrin modified microchip in aqueous media. ACS Appl Mater Interface. 2016;8(50):34833–43.  https://doi.org/10.1021/acsami.6b10213.CrossRefGoogle Scholar
  20. 20.
    Kano K, Kitagishi H, Kodera M, Hirota S. Dioxygen binding to a simple myoglobin model in aqueous solution. Angew Chem Int Ed. 2005;117(3):439–42.  https://doi.org/10.1002/ange.200461609.CrossRefGoogle Scholar
  21. 21.
    Qu X, Zhang H, Chen H, Aldalbahi A, Li L, Tian Y, et al. Convection-driven pull-down assays in nanoliter droplets using scaffolded aptamers. Anal Chem. 2017;89(6):3468–73.  https://doi.org/10.1021/acs.analchem.6b04475.CrossRefGoogle Scholar
  22. 22.
    Qi L, Xiao M, Wang X, Wang C, Wang L, Song S, et al. DNA-encoded Raman-active anisotropic nanoparticles for microRNA detection. Anal Chem. 2017;89(18):9850–6.  https://doi.org/10.1021/acs.analchem.7b01861.CrossRefGoogle Scholar
  23. 23.
    Qu X, Zhu D, Yao G, Su S, Chao J, Liu H, et al. An exonuclease III-powered, on-particle stochastic DNA walker. Angew Chem Int Ed. 2017;56(7):1855.  https://doi.org/10.1002/anie.201611777.CrossRefGoogle Scholar
  24. 24.
    Zhong R, Tang Q, Wang S, Zhang H, Zhang F, Xiao M, et al. Self-assembly of enzyme-like nanofibrous G-molecular hydrogel for printed flexible electrochemical sensors. Adv Mater. 2018;30(12):1706887.  https://doi.org/10.1002/adma.201706887.CrossRefGoogle Scholar
  25. 25.
    Illien P, Zhao X, Dey KK, Butler PJ, Sen A, Golestanian R. Exothermicity is not a necessary condition for enhanced diffusion of enzymes. Nano Lett. 2017;17(7):4415–20.  https://doi.org/10.1021/acs.nanolett.7b01502.CrossRefGoogle Scholar
  26. 26.
    Niether D, Kawaguchi T, Hovancová J, Eguchi K, Dhont JKG, Kita R, et al. Role of hydrogen bonding of cyclodextrin-drug complexes probed by thermodiffusion. Langmuir. 2017;33(34):8483–92.  https://doi.org/10.1021/acs.langmuir.7b02313.CrossRefGoogle Scholar
  27. 27.
    Muddana HS, Sengupta S, Sen A, Butler PJ. Enhanced brightness and photostability of cyanine dyes by supramolecular containment. Quant Biol. 2014. https://arxiv.org/abs/1410.0844.
  28. 28.
    Luo D, Huang B, Wang L, Mahmoud idris A, Wang S, Lu X. Cathodic electrochemiluminescence of meso-tetra(4-carboxyphenyl)porphyrin/potassium peroxydisulfate system in aqueous media. Electrochim Acta. 2015;151:42–9.  https://doi.org/10.1016/j.electacta.2014.11.004.
  29. 29.
    Wu H, Fan S, Jin X, Zhang H, Chen H, Dai Z, et al. Construction of a zinc porphyrin-fullerene-derivative based nonenzymatic electrochemical sensor for sensitive sensing of hydrogen peroxide and nitrite. Anal Chem. 2014;86(13):6285–90.  https://doi.org/10.1021/ac500245k.CrossRefGoogle Scholar
  30. 30.
    Liu S, Yuan H, Bai H, Zhang P, Lv F, Liu L, et al. Electrochemiluminescence for electric-driven antibacterial therapeutics. J Am Chem Soc. 2018;140(6):2284–91.  https://doi.org/10.1021/jacs.7b12140.CrossRefGoogle Scholar
  31. 31.
    Zhang GY, Deng SY, Shan D, Zhang XJ. Cathodic electrochemiluminescence of singlet oxygen induced by the electroactive zinc porphyrin in aqueous media. Electrochim Acta. 2016;190:64–8.  https://doi.org/10.1016/j.electacta.2015.12.228.CrossRefGoogle Scholar
  32. 32.
    Jiang BB, Wei XW, Wu FH, Wu KL, Chen L, Yuan GZ, et al. A non-enzymatic hydrogen peroxide sensor based on a glassy carbon electrode modified with cuprous oxide and nitrogen-doped graphene in a nafion matrix. Microchim Acta. 2014;181(11–12):1463–70.  https://doi.org/10.1007/s00604-014-1232-7.CrossRefGoogle Scholar
  33. 33.
    Wang MQ, Zhang Y, Bao SJ, Yu YN, Ye C. Ni(II)-based metal-organic framework anchored on carbon nanotubes for highly sensitive non-enzymatic hydrogen peroxide sensing. Electrochim Acta. 2016;190:365–70.  https://doi.org/10.1016/j.electacta.2015.12.199.CrossRefGoogle Scholar
  34. 34.
    Favereau L, Cnossen A, Kelber JB, Gong JQ, Oetterli R, Cremers J, et al. Six-coordinate zinc porphyrins for template-directed synthesis of spiro-fused nanorings. J Am Chem Soc. 2015;137(45):14256–9.  https://doi.org/10.1021/jacs.5b10126.CrossRefGoogle Scholar
  35. 35.
    Li X, Yuan H, Li L, Xiao D. Electrogenerated chemiluminescence of magnesium chlorophyllin an aqueous solution and its sensitive response to the carcinogen aflatoxin B1. Biosens Bioelectron. 2016;55:350–4.  https://doi.org/10.1016/j.bios.2013.12.026.

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Key Laboratory of New Membrane Materials, Ministry of Industry and Information Technology School of Environmental and Biological EngineeringNanjing University of Science and TechnologyNanjingChina
  2. 2.School of Mechanical EngineeringNanjing University of Science and TechnologyNanjingChina
  3. 3.School of Chemical EngineeringNanjing University of Science and TechnologyNanjingChina

Personalised recommendations