Advertisement

Nanobody: outstanding features for diagnostic and therapeutic applications

  • J.-Pablo SalvadorEmail author
  • Lluïsa Vilaplana
  • M.-Pilar Marco
Trends
  • 31 Downloads

Abstract

Nanobodies (Nbs) have arisen as an alternative to conventional antibodies (Abs) and show great potential when used as tools in different biotechnology fields such as diagnostics and therapy. Different approaches have been described for the production of Nbs and these methods face new challenges focused on improving yield, affinity, and reducing production costs. This review summarizes these challenges, and also the latest advances in the detection of different kinds of molecules, such as proteins and small molecules, and describes their potential use for noninvasive in vivo imaging and for in vitro assays. Moreover, the unique properties of Nbs are outlined like internalization, size, thermal and chemical stability, affinity, blood clearance, and labeling procedures. Concerning therapeutic applications, we highlight some already reported examples about Nbs being used for the treatment of several diseases such as cancer, neurodegenerative or infectious diseases among others. Finally, future trends, opportunities, and disadvantages are also discussed.

Keywords

Nanobody Imaging Therapeutic Diagnosis Immunoassays Single-domain antibody 

Notes

Acknowledgements

This work has been funded by the ImmunoQS project funded by MINECO, Programa Estatal de Investigación Desarrollo e Innovación Orientada a los Retos de la Sociedad (SAF2015-67476-R). The Nb4D group is a consolidated research group (Grup de Recerca) of the Generalitat de Catalunya and has support from the Departament d’Universitats, Recerca i Societat de la Informació de la Generalitat de Catalunya (expedient: 2017 SGR 1441). CIBER-BBN is an initiative funded by the Spanish National Plan for Scientific and Technical Research and Innovation 2013-2016, Iniciativa Ingenio 2010, Consolider Program, CIBER Actions are financed by the Instituto de Salud Carlos III with assistance from the European Regional Development Fund.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Ruigrok Vincent JB, Levisson M, Eppink Michel HM, Smidt H, van der Oost J. Alternative affinity tools: more attractive than antibodies? Biochem J. 2011;436(1):1–13.  https://doi.org/10.1042/bj20101860.Google Scholar
  2. 2.
    Muyldermans S. Nanobodies: natural single-domain antibodies. Annu Rev Biochem. 2013;82(1):775–97.  https://doi.org/10.1146/annurev-biochem-063011-092449.Google Scholar
  3. 3.
    Ingram JR, Schmidt FI, Ploegh HL. Exploiting nanobodies’ singular traits. In: Littman DR, Yokoyama WM, editors. Annual review of immunology, vol 36. Annu rev Immunol. 2018; 695–715.  https://doi.org/10.1146/annurev-immunol-042617-053327.
  4. 4.
    Hamers-Casterman C, Atarhouch T, Muyldermans S, Robinson G, Hamers C, Songa EB, et al. Naturally occurring antibodies devoid of light chains. Nature. 1993;363(6428):446–8.  https://doi.org/10.1038/363446a0.Google Scholar
  5. 5.
    Muyldermans S, Baral TN, Retamozzo VC, De Baetselier P, De Genst E, Kinne J, Leonhardt H, Magez S, Nguyen VK, Revets H, Rothbauer U, Stijlemans B, Tillib S, Wernery U, Wyns L, Hassanzadeh-Ghassabeh G, Saerens D. Camelid immunoglobulins and nanobody technology. Vet Immunol Immunopathol. 2009;128:178–183.  https://doi.org/10.1016/j.vetimm.2008.10.299.
  6. 6.
    Steeland S, Vandenbroucke RE, Libert C. Nanobodies as therapeutics: big opportunities for small antibodies. Drug Discov Today. 2016;21(7):1076–113.  https://doi.org/10.1016/j.drudis.2016.04.003.Google Scholar
  7. 7.
    Liu W, Song H, Chen Q, Yu J, Xian M, Nian R, et al. Recent advances in the selection and identification of antigen-specific nanobodies. Mol Immunol. 2018;96:37–47.  https://doi.org/10.1016/j.molimm.2018.02.012.Google Scholar
  8. 8.
    Kubala MH, Kovtun O, Alexandrov K, Collins BM. Structural and thermodynamic analysis of the GFP:GFP-nanobody complex. Protein Sci. 2010;19(12):2389–401.  https://doi.org/10.1002/pro.519.Google Scholar
  9. 9.
    Kunz P, Zinner K, Mücke N, Bartoschik T, Muyldermans S, Hoheisel JD. The structural basis of nanobody unfolding reversibility and thermoresistance. Sci Rep. 2018;8(1):7934.  https://doi.org/10.1038/s41598-018-26338-z.Google Scholar
  10. 10.
    Siontorou CG. Nanobodies as novel agents for disease diagnosis and therapy. Int J Nanomed. 2013;8:4215–27.  https://doi.org/10.2147/ijn.s39428.Google Scholar
  11. 11.
    Crivianu-Gaita V, Thompson M. Aptamers, antibody scFv, and antibody Fab’ fragments: an overview and comparison of three of the most versatile biosensor biorecognition elements. Biosens Bioelectron. 2016;85:32–45.  https://doi.org/10.1016/j.bios.2016.04.091.Google Scholar
  12. 12.
    Wang Y, Fan Z, Shao L, Kong X, Hou X, Tian D, et al. Nanobody-derived nanobiotechnology tool kits for diverse biomedical and biotechnology applications. Int J Nanomed. 2016;11:3287–302.  https://doi.org/10.2147/ijn.s107194.Google Scholar
  13. 13.
    Iezzi ME, Policastro L, Werbajh S, Podhajcer O, Canziani GA. Single-domain antibodies and the promise of modular targeting in cancer imaging and treatment. Front Immunol. 2018;9:273.  https://doi.org/10.3389/fimmu.2018.00273.
  14. 14.
    Pardon E, Laeremans T, Triest S, Rasmussen SGF, Wohlkönig A, Ruf A, et al. A general protocol for the generation of nanobodies for structural biology. Nat Protocols. 2014;9(3):674–93.  https://doi.org/10.1038/nprot.2014.039.Google Scholar
  15. 15.
    Liu Y, Huang H. Expression of single-domain antibody in different systems. Appl Microbiol Biotechnol. 2018;102(2):539–51.  https://doi.org/10.1007/s00253-017-8644-3.Google Scholar
  16. 16.
    Sockolosky JT, Dougan M, Ingram JR, Ho CCM, Kauke MJ, Almo SC, et al. Durable antitumor responses to CD47 blockade require adaptive immune stimulation. Proc Natl Acad Sci. 2016;113(19):E2646–54.  https://doi.org/10.1073/pnas.1604268113.Google Scholar
  17. 17.
    Vuchelen A, O’Day E, De Genst E, Pardon E, Wyns L, Dumoulin M, et al. (1)H, (13)C and (15)N assignments of a camelid nanobody directed against human alpha-synuclein. Biomol NMR Assign. 2009;3(2):231–3.  https://doi.org/10.1007/s12104-009-9182-4.Google Scholar
  18. 18.
    Kumar H, Finer-Moore JS, Jiang X, Smirnova I, Kasho V, Pardon E, et al. Crystal structure of a ligand-bound LacY-Nanobody complex. Proc Natl Acad Sci U S A. 2018;115(35):8769–74.  https://doi.org/10.1073/pnas.1801774115.Google Scholar
  19. 19.
    Robert B, Dorvillius M, Buchegger F, Garambois V, Mani JC, Pugnieres M, et al. Tumor targeting with newly designed biparatopic antibodies directed against two different epitopes of the carcinoembryonic antigen (CEA). Int J Cancer. 1999;81(2):285–91.Google Scholar
  20. 20.
    Els Conrath K, Lauwereys M, Wyns L, Muyldermans S. Camel single-domain antibodies as modular building units in bispecific and bivalent antibody constructs. J Biol Chem. 2001;276(10):7346–50.  https://doi.org/10.1074/jbc.M007734200.Google Scholar
  21. 21.
    Sedykh SE, Prinz VV, Buneva VN, Nevinsky GA. Bispecific antibodies: design, therapy, perspectives. Drug Design Dev Ther. 2018;12:195–208.  https://doi.org/10.2147/DDDT.S151282.Google Scholar
  22. 22.
    Davies J, Riechmann L. Single antibody domains as small recognition units: design and in vitro antigen selection of camelized, human VH domains with improved protein stability. Protein Eng. 1996;9(6):531–7.Google Scholar
  23. 23.
    Arbabi Ghahroudi M, Desmyter A, Wyns L, Hamers R, Muyldermans S. Selection and identification of single domain antibody fragments from camel heavy-chain antibodies. FEBS Lett. 1997;414(3):521–6.Google Scholar
  24. 24.
    Perez JM, Renisio JG, Prompers JJ, van Platerink CJ, Cambillau C, Darbon H, et al. Thermal unfolding of a llama antibody fragment: a two-state reversible process. Biochemistry. 2001;40(1):74–83.Google Scholar
  25. 25.
    Dumoulin M, Conrath K, Van Meirhaeghe A, Meersman F, Heremans K, Frenken LG, et al. Single-domain antibody fragments with high conformational stability. Protein Sci. 2002;11(3):500–15.  https://doi.org/10.1110/ps.34602.Google Scholar
  26. 26.
    Wolfgang WJ, Miller TW, Webster JM, Huston JS, Thompson LM, Marsh JL, et al. Suppression of Huntington’s disease pathology in Drosophila by human single-chain Fv antibodies. Proc Natl Acad Sci U S A. 2005;102(32):11563–8.  https://doi.org/10.1073/pnas.0505321102.Google Scholar
  27. 27.
    Wang J, Mukhtar H, Ma L, Pang Q, Wang X. VHH antibodies: reagents for mycotoxin detection in food products. Sensors. 2018;18(2):485.Google Scholar
  28. 28.
    McMurphy T, Xiao R, Magee D, Slater A, Zabeau L, Tavernier J, et al. The anti-tumor activity of a neutralizing nanobody targeting leptin receptor in a mouse model of melanoma. PLoS One. 2014;9(2):e89895.  https://doi.org/10.1371/journal.pone.0089895.Google Scholar
  29. 29.
    Blick SK, Curran MP. Certolizumab pegol: in Crohn’s disease. BioDrugs. 2007;21(3):195–201; discussion 202-193.  https://doi.org/10.2165/00063030-200721030-00006.Google Scholar
  30. 30.
    Padlan EA. X-ray crystallography of antibodies. Adv Protein Chem. 1996;49:57–133.Google Scholar
  31. 31.
    Conrath KE, Lauwereys M, Galleni M, Matagne A, Frere JM, Kinne J, Wyns L, Muyldermans S. Beta-lactamase inhibitors derived from single-domain antibody fragments elicited in the Camelidae. Antimicrob Agents Chemother. 2001;45(10):2807–2812.  https://doi.org/10.1128/aac.45.10.2807-2812.2001.
  32. 32.
    Lauwereys M, Arbabi Ghahroudi M, Desmyter A, Kinne J, Holzer W, De Genst E, et al. Potent enzyme inhibitors derived from dromedary heavy-chain antibodies. EMBO J. 1998;17(13):3512–20.  https://doi.org/10.1093/emboj/17.13.3512.Google Scholar
  33. 33.
    Vincke C, Loris R, Saerens D, Martinez-Rodriguez S, Muyldermans S, Conrath K. General strategy to humanize a camelid single-domain antibody and identification of a universal humanized nanobody scaffold. J Biol Chem. 2009;284(5):3273–84.  https://doi.org/10.1074/jbc.M806889200.Google Scholar
  34. 34.
    Saerens D, Huang L, Bonroy K, Muyldermans S. Antibody fragments as probe in biosensor development. Sensors (Basel). 2008;8(8):4669–86.  https://doi.org/10.3390/s8084669.Google Scholar
  35. 35.
    Pinto Torres JE, Goossens J, Ding J, Li Z, Lu S, Vertommen D, et al. Development of a nanobody-based lateral flow assay to detect active Trypanosoma congolense infections. Sci Rep. 2018;8(1):9019.  https://doi.org/10.1038/s41598-018-26732-7.Google Scholar
  36. 36.
    Qiu Y, Li P, Dong S, Zhang X, Yang Q, Wang Y, et al. Phage-mediated competitive chemiluminescent immunoassay for detecting Cry1Ab toxin by using an anti-idiotypic camel nanobody. J Agric Food Chem. 2018;66(4):950–6.  https://doi.org/10.1021/acs.jafc.7b04923.Google Scholar
  37. 37.
    Tu Z, Chen Q, Li Y, Xiong Y, Xu Y, Hu N, et al. Identification and characterization of species-specific nanobodies for the detection of Listeria monocytogenes in milk. Anal Biochem. 2016;493:1–7.  https://doi.org/10.1016/j.ab.2015.09.023.Google Scholar
  38. 38.
    Zafra O, Fraile S, Gutiérrez C, Haro A, Páez-Espino AD, Jiménez JI, et al. Monitoring biodegradative enzymes with nanobodies raised in Camelus dromedarius with mixtures of catabolic proteins. Environ Microbiol. 2011;13(4):960–74.  https://doi.org/10.1111/j.1462-2920.2010.02401.x.Google Scholar
  39. 39.
    Campuzano S, Salema V, Moreno-Guzmán M, Gamella M, Yáñez-Sedeño P, Fernández LA, et al. Disposable amperometric magnetoimmunosensors using nanobodies as biorecognition element. Determination of fibrinogen in plasma. Biosens Bioelectron. 2014;52:255–60.  https://doi.org/10.1016/j.bios.2013.08.055.Google Scholar
  40. 40.
    Marco M-P, Gee S, Hammock BD. Immunochemical techniques for environmental analysis II. Antibody production and immunoassay development. TrAC Trends Anal Chem. 1995;14(8):415–25.  https://doi.org/10.1016/0165-9936(95)90920-I.Google Scholar
  41. 41.
    Fodey T, Leonard P, O’Mahony J, O’Kennedy R, Danaher M. Developments in the production of biological and synthetic binders for immunoassay and sensor-based detection of small molecules. TrAC Trends Anal Chem. 2011;30(2):254–69.  https://doi.org/10.1016/j.trac.2010.10.011.Google Scholar
  42. 42.
    Bever CS, Dong J-X, Vasylieva N, Barnych B, Cui Y, Xu Z-L, et al. VHH antibodies: emerging reagents for the analysis of environmental chemicals. Anal Bioanal Chem. 2016;408(22):5985–6002.  https://doi.org/10.1007/s00216-016-9585-x.Google Scholar
  43. 43.
    Alvarez-Rueda N, Behar G, Ferré V, Pugnière M, Roquet F, Gastinel L, et al. Generation of llama single-domain antibodies against methotrexate, a prototypical hapten. Mol Immunol. 2007;44(7):1680–90.  https://doi.org/10.1016/j.molimm.2006.08.007.Google Scholar
  44. 44.
    Makvandi-Nejad S, Fjällman T, Arbabi-Ghahroudi M, MacKenzie CR, Hall JC. Selection and expression of recombinant single domain antibodies from a hyper-immunized library against the hapten azoxystrobin. J Immunol Methods. 2011;373(1):8–18.  https://doi.org/10.1016/j.jim.2011.07.006.Google Scholar
  45. 45.
    Wang J, Bever CRS, Majkova Z, Dechant JE, Yang J, Gee SJ, et al. Heterologous antigen selection of camelid heavy chain single domain antibodies against tetrabromobisphenol A. Anal Chem. 2014;86(16):8296–302.  https://doi.org/10.1021/ac5017437.Google Scholar
  46. 46.
    Kim H-J, McCoy MR, Majkova Z, Dechant JE, Gee SJ, Tabares-da Rosa S, et al. Isolation of alpaca anti-hapten heavy chain single domain antibodies for development of sensitive immunoassay. Anal Chem. 2012;84(2):1165–71.  https://doi.org/10.1021/ac2030255.Google Scholar
  47. 47.
    Pan D, Li G, Hu H, Xue H, Zhang M, Zhu M, et al. Direct immunoassay for facile and sensitive detection of small molecule aflatoxin B1 based on nanobody. Chemistry. 2018;24(39):9869–76.  https://doi.org/10.1002/chem.201801202.Google Scholar
  48. 48.
    Liu X, Tang Z, Duan Z, He Z, Shu M, Wang X, et al. Nanobody-based enzyme immunoassay for ochratoxin a in cereal with high resistance to matrix interference. Talanta. 2017;164:154–8.  https://doi.org/10.1016/j.talanta.2016.11.039.Google Scholar
  49. 49.
    Wang J, Majkova Z, Bever CRS, Yang J, Gee SJ, Li J, et al. One-step immunoassay for tetrabromobisphenol A using a camelid single domain antibody–alkaline phosphatase fusion protein. Anal Chem. 2015;87(9):4741–8.  https://doi.org/10.1021/ac504735p.Google Scholar
  50. 50.
    Tang X, Li P, Zhang Q, Zhang Z, Zhang W, Jiang J. Time-resolved fluorescence immunochromatographic assay developed using two idiotypic nanobodies for rapid, quantitative, and simultaneous detection of aflatoxin and zearalenone in maize and its products. Anal Chem. 2017;89(21):11520–8.  https://doi.org/10.1021/acs.analchem.7b02794.Google Scholar
  51. 51.
    Traenkle B, Rothbauer U. Under the microscope: single-domain antibodies for live-cell imaging and super-resolution microscopy. Front Immunol. 2017;8:1030.  https://doi.org/10.3389/fimmu.2017.01030.
  52. 52.
    Roeder R, Helma J, Prei T, Raedler JO, Leonhardt H, Wagner E. Intracellular delivery of nanobodies for imaging of target proteins in live cells. Pharm Res. 2017;34(1):161–74.  https://doi.org/10.1007/s11095-016-2052-8.Google Scholar
  53. 53.
    Schumacher D, Helma J, Schneider AFL, Leonhardt H, Hackenberger CPR. Nanobodies: chemical functionalization strategies and intracellular applications. Angew Chem Int Ed. 2018;57(9):2314–33.  https://doi.org/10.1002/anie.201708459.Google Scholar
  54. 54.
    Gainkam LOT, Huang L, Caveliers V, Keyaerts M, Hernot S, Vaneycken I, et al. Comparison of the biodistribution and tumor targeting of two Tc-99m-labeled anti-EGFR nanobodies in mice, using pinhole SPECT/micro-CT. J Nucl Med. 2008;49(5):788–95.  https://doi.org/10.2967/jnumed.107.048538.Google Scholar
  55. 55.
    Debie P, Van Quathem J, Hansen I, Bala G, Massa S, Devoogdt N, et al. Effect of dye and conjugation chemistry on the biodistribution profile of near-infrared-labeled nanobodies as tracers for image-guided surgery. Mol Pharm. 2017;14(4):1145–53.  https://doi.org/10.1021/acs.molpharmaceut.6b01053.Google Scholar
  56. 56.
    Kohler G, Milstein C. Continuous cultures of fused cells secreting antibody of predefined specificity. Nature. 1975;256(5517):495–7.Google Scholar
  57. 57.
    Fraser G, Smith CA, Imrie K, Meyer R, Hematology Disease Site Group of Cancer Care Ontario’s Program in Evidence-Based Care. Alemtuzumab in chronic lymphocytic leukemia. Curr Oncol. 2007;14(3):96–109.Google Scholar
  58. 58.
    Casadevall A. The case for pathogen-specific therapy. Expert Opin Pharmacother. 2009;10(11):1699–703.  https://doi.org/10.1517/14656560903066837.Google Scholar
  59. 59.
    Pankhurst T, Adu D. Antibodies in the prevention of renal allograft rejection. Expert Opin Biol Ther. 2004;4(2):243–52.  https://doi.org/10.1517/14712598.4.2.243.Google Scholar
  60. 60.
    Ibanez LI, De Filette M, Hultberg A, Verrips T, Temperton N, Weiss RA, et al. Nanobodies with in vitro neutralizing activity protect mice against H5N1 influenza virus infection. J Infect Dis. 2011;203(8):1063–72.  https://doi.org/10.1093/infdis/jiq168.Google Scholar
  61. 61.
    Unger M, Eichhoff AM, Schumacher L, Strysio M, Menzel S, Schwan C, et al. Selection of nanobodies that block the enzymatic and cytotoxic activities of the binary Clostridium difficile toxin CDT. Sci Rep. 2015;5:7850.  https://doi.org/10.1038/srep07850.Google Scholar
  62. 62.
    Lafaye P, Achour I, England P, Duyckaerts C, Rougeon F. Single-domain antibodies recognize selectively small oligomeric forms of amyloid beta, prevent Abeta-induced neurotoxicity and inhibit fibril formation. Mol Immunol. 2009;46(4):695–704.  https://doi.org/10.1016/j.molimm.2008.09.008.Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • J.-Pablo Salvador
    • 1
    • 2
    Email author
  • Lluïsa Vilaplana
    • 1
    • 2
  • M.-Pilar Marco
    • 1
    • 2
  1. 1.Nanobiotechnology for Diagnostics Group (Nb4D), Department of Chemical and Biomolecular NanotechnologyInstitute for Advanced Chemistry of Catalonia (IQAC) of the Spanish Council for Scientific Research (CSIC)BarcelonaSpain
  2. 2.CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN)BarcelonaSpain

Personalised recommendations