Advertisement

Rapid determination of isocitrate dehydrogenase mutation status of human gliomas by extraction nanoelectrospray using a miniature mass spectrometer

  • Fan Pu
  • Clint M. Alfaro
  • Valentina Pirro
  • Zhuoer Xie
  • Zheng Ouyang
  • R. Graham CooksEmail author
Communication

Abstract

Isocitrate dehydrogenase (IDH) I and II mutations in gliomas cause an abnormal accumulation of 2-hydroxyglutarate (2-HG) in these tumor cells. These mutations have potential prognostic value in that knowledge of the mutation status can lead to improved surgical resection. Information on mutation status obtained by immunohistochemistry or genomic analysis is not available during surgery. We report a rapid extraction nanoelectrospray ionization (nESI) method of determining 2-HG. This should allow the determination of IDH mutation status to be performed intraoperatively, within minutes, using a miniature mass spectrometer. This study demonstrates that the combination of tandem mass spectrometry with low-resolution mass spectrometry allows this analysis to be performed with confidence.

Graphical Abstract

Keywords

2-Hydroxyglutarate Glutamate IDH mutation Tandem mass spectrometry Clinical analysis 

Notes

Acknowledgements

The authors thank Dr. Mahua Dey, Dr. Charles Kulwin, Dr. James Miller, Dr. Troy Payner, Dr. Mitesh Shah, Dr. Scott Shapiro, and Dr. Aaron A. Cohen-Gadol at Goodman Campbell Brain and Spine (Indianapolis, IN) for providing tissue samples, and Dr. Eyas M. Hattab at the University of Louisville for pathology analysis. PURSPEC Technologies Inc. is acknowledged for providing the miniature mass spectrometry system and for technical support. Support from the Purdue University Center, Cancer Research Small Grants Program, is gratefully acknowledged.

Funding information

This study received funding from Grant No. UL1TR002529 (A. Shekhar, PI) from the National Institutes of Health, National Center for Advancing Translational Sciences, Clinical and Translational Sciences Award; from the National Institute of Biomedical Imaging and Bioengineering, NIH Grant R21EB015722; from the National Institute of Allergy And Infectious Diseases, NIH Grant R01AI122298; and from the Purdue University Center for Cancer Research Small Grants Program.

Compliance with ethical standards

Banked tissue samples were obtained from the Methodist Research Institute Biorepository in Indianapolis in accordance with approved Institutional Review Board (IRB) protocols at Indiana University School of Medicine (IUSM) (IRB No. 1410015344). Tissues for bulk tissue analysis were prospectively obtained from human subjects undergoing tumor resection for suspected glioma at Indiana University Department of Neurosurgery, Goodman Campbell Brain and Spine Institute, after they had provided written informed consent to participate in the research study, following an IUSM IRB approved protocol (IRB No. 1410342262).

Conflict of interest

Zheng Ouyang is the founder of PURSPEC Technologies Inc.

Supplementary material

216_2019_1632_MOESM1_ESM.pdf (406 kb)
ESM 1 (PDF 405 kb)

References

  1. 1.
    Ostrom QT, Gittleman H, Liao P, Vecchione-Koval T, Wolinsky Y, Kruchko C, et al. CBTRUS Statistical Report: primary brain and other central nervous system tumors diagnosed in the United States in 2010-2014. Neuro-Oncology. 2017;19(suppl_5):v1–v88.  https://doi.org/10.1093/neuonc/nox158.CrossRefGoogle Scholar
  2. 2.
    Louis DN, Perry A, Reifenberger G, von Deimling A, Figarella-Branger D, Cavenee WK, et al. The 2016 World Health Organization Classification of Tumors of the Central Nervous System: a summary. Acta Neuropathol. 2016;131(6):803–20.  https://doi.org/10.1007/s00401-016-1545-1.CrossRefGoogle Scholar
  3. 3.
    Yan H, Parsons DW, Jin G, McLendon R, Rasheed BA, Yuan W, et al. IDH1 and IDH2 mutations in gliomas. N Engl J Med. 2009;360(8):765–73.  https://doi.org/10.1056/NEJMoa0808710.CrossRefGoogle Scholar
  4. 4.
    Hartmann C, Hentschel B, Wick W, Capper D, Felsberg J, Simon M, et al. Patients with IDH1 wild type anaplastic astrocytomas exhibit worse prognosis than IDH1-mutated glioblastomas, and IDH1 mutation status accounts for the unfavorable prognostic effect of higher age: implications for classification of gliomas. Acta Neuropathol. 2010;120(6):707–18.  https://doi.org/10.1007/s00401-010-0781-z.CrossRefGoogle Scholar
  5. 5.
    Buckner JC, Shaw EG, Pugh SL, Chakravarti A, Gilbert MR, Barger GR, et al. Radiation plus procarbazine, CCNU, and vincristine in low-grade glioma. N Engl J Med. 2016;374(14):1344–55.  https://doi.org/10.1056/NEJMoa1500925.CrossRefGoogle Scholar
  6. 6.
    Cairncross G, Wang M, Shaw E, Jenkins R, Brachman D, Buckner J, et al. Phase III trial of chemoradiotherapy for anaplastic oligodendroglioma: long-term results of RTOG 9402. J Clin Oncol. 2013;31(3):337–43.  https://doi.org/10.1200/JCO.2012.43.2674.CrossRefGoogle Scholar
  7. 7.
    Cairncross JG, Wang M, Jenkins RB, Shaw EG, Giannini C, Brachman DG, et al. Benefit from procarbazine, lomustine, and vincristine in oligodendroglial tumors is associated with mutation of IDH. J Clin Oncol. 2014;32(8):783–90.  https://doi.org/10.1200/JCO.2013.49.3726.CrossRefGoogle Scholar
  8. 8.
    Beiko J, Suki D, Hess KR, Fox BD, Cheung V, Cabral M, et al. IDH1 mutant malignant astrocytomas are more amenable to surgical resection and have a survival benefit associated with maximal surgical resection. Neuro-Oncology. 2014;16(1):81–91.  https://doi.org/10.1093/neuonc/not159.CrossRefGoogle Scholar
  9. 9.
    Dang L, White DW, Gross S, Bennett BD, Bittinger MA, Driggers EM, et al. Cancer-associated IDH1 mutations produce 2-hydroxyglutarate. Nature. 2009;462(7274):739–44.  https://doi.org/10.1038/nature08617.CrossRefGoogle Scholar
  10. 10.
    Miller JJ, Shih HA, Andronesi OC, Cahill DP. Isocitrate dehydrogenase-mutant glioma: evolving clinical and therapeutic implications. Cancer. 2017;123(23):4535–46.  https://doi.org/10.1002/cncr.31039.CrossRefGoogle Scholar
  11. 11.
    Andronesi OC, Kim GS, Gerstner E, Batchelor T, Tzika AA, Fantin VR, et al. Detection of 2-hydroxyglutarate in IDH-mutated glioma patients by in vivo spectral-editing and 2D correlation magnetic resonance spectroscopy. Sci Transl Med. 2012;4(116):116ra4.  https://doi.org/10.1126/scitranslmed.3002693.CrossRefGoogle Scholar
  12. 12.
    Choi C, Ganji SK, DeBerardinis RJ, Hatanpaa KJ, Rakheja D, Kovacs Z, et al. 2-hydroxyglutarate detection by magnetic resonance spectroscopy in IDH-mutated patients with gliomas. Nat Med. 2012;18(4):624–9.  https://doi.org/10.1038/nm.2682.CrossRefGoogle Scholar
  13. 13.
    Pope WB, Prins RM, Albert Thomas M, Nagarajan R, Yen KE, Bittinger MA, et al. Non-invasive detection of 2-hydroxyglutarate and other metabolites in IDH1 mutant glioma patients using magnetic resonance spectroscopy. J Neuro-Oncol. 2012;107(1):197–205.  https://doi.org/10.1007/s11060-011-0737-8.CrossRefGoogle Scholar
  14. 14.
    Takats Z, Wiseman JM, Gologan B, Cooks RG. Mass spectrometry sampling under ambient conditions with desorption electrospray ionization. Science. 2004;306(5695):471–3.  https://doi.org/10.1126/science.1104404. CrossRefGoogle Scholar
  15. 15.
    Cody RB, Laramee JA, Durst HD. Versatile new ion source for the analysis of materials in open air under ambient conditions. Anal Chem. 2005;77(8):2297–302.  https://doi.org/10.1021/ac050162j.CrossRefGoogle Scholar
  16. 16.
    Monge ME, Harris GA, Dwivedi P, Fernandez FM. Mass spectrometry: recent advances in direct open air surface sampling/ionization. Chem Rev. 2013;113(4):2269–308.  https://doi.org/10.1021/cr300309q.CrossRefGoogle Scholar
  17. 17.
    Alberici RM, Simas RC, Sanvido GB, Romao W, Lalli PM, Benassi M, et al. Ambient mass spectrometry: bringing MS into the “real world”. Anal Bioanal Chem. 2010;398(1):265–94.  https://doi.org/10.1007/s00216-010-3808-3.CrossRefGoogle Scholar
  18. 18.
    Chen H, Gamez G, Zenobi R. What can we learn from ambient ionization techniques? J Am Soc Mass Spectrom. 2009;20(11):1947–63.  https://doi.org/10.1016/j.jasms.2009.07.025.CrossRefGoogle Scholar
  19. 19.
    Santagata S, Eberlin LS, Norton I, Calligaris D, Feldman DR, Ide JL, et al. Intraoperative mass spectrometry mapping of an onco-metabolite to guide brain tumor surgery. Proc Natl Acad Sci U S A. 2014;111(30):11121–6.  https://doi.org/10.1073/pnas.1404724111.CrossRefGoogle Scholar
  20. 20.
    Jarmusch AK, Pirro V, Baird Z, Hattab EM, Cohen-Gadol AA, Cooks RG. Lipid and metabolite profiles of human brain tumors by desorption electrospray ionization-MS. Proc Natl Acad Sci U S A. 2016;113(6):1486–91.  https://doi.org/10.1073/pnas.1523306113.CrossRefGoogle Scholar
  21. 21.
    Pirro V, Alfaro CM, Jarmusch AK, Hattab EM, Cohen-Gadol AA, Cooks RG. Intraoperative assessment of tumor margins during glioma resection by desorption electrospray ionization-mass spectrometry. Proc Natl Acad Sci U S A. 2017;114(26):6700–5.  https://doi.org/10.1073/pnas.1706459114. Google Scholar
  22. 22.
    Margulis K, Chiou AS, Aasi SZ, Tibshirani RJ, Tang JY, Zare RN. Distinguishing malignant from benign microscopic skin lesions using desorption electrospray ionization mass spectrometry imaging. Proc Natl Acad Sci U S A. 2018;115(25):6347–52.  https://doi.org/10.1073/pnas.1803733115.CrossRefGoogle Scholar
  23. 23.
    Wang H, Manicke NE, Yang Q, Zheng L, Shi R, Cooks RG, et al. Direct analysis of biological tissue by paper spray mass spectrometry. Anal Chem. 2011;83(4):1197–201.  https://doi.org/10.1021/ac103150a.CrossRefGoogle Scholar
  24. 24.
    Liu J, Cooks RG, Ouyang Z. Biological tissue diagnostics using needle biopsy and spray ionization mass spectrometry. Anal Chem. 2011;83(24):9221–5.  https://doi.org/10.1021/ac202626f.CrossRefGoogle Scholar
  25. 25.
    Kerian KS, Jarmusch AK, Cooks RG. Touch spray mass spectrometry for in situ analysis of complex samples. Analyst. 2014;139(11):2714–20.  https://doi.org/10.1039/c4an00548a.CrossRefGoogle Scholar
  26. 26.
    Pirro V, Llor RS, Jarmusch AK, Alfaro CM, Cohen-Gadol AA, Hattab EM, et al. Analysis of human gliomas by swab touch spray-mass spectrometry: applications to intraoperative assessment of surgical margins and presence of oncometabolites. Analyst. 2017;142(21):4058–66.  https://doi.org/10.1039/c7an01334e.CrossRefGoogle Scholar
  27. 27.
    Laskin J, Heath BS, Roach PJ, Cazares L, Semmes OJ. Tissue imaging using nanospray desorption electrospray ionization mass spectrometry. Anal Chem. 2012;84(1):141–8.  https://doi.org/10.1021/ac2021322.CrossRefGoogle Scholar
  28. 28.
    Tang F, Guo C, Ma X, Zhang J, Su Y, Tian R, et al. Rapid in situ profiling of lipid C=C location isomers in tissue using ambient mass spectrometry with photochemical reactions. Anal Chem. 2018;90(9):5612–9.  https://doi.org/10.1021/acs.analchem.7b04675.CrossRefGoogle Scholar
  29. 29.
    Zhang J, Rector J, Lin JQ, Young JH, Sans M, Katta N, et al. Nondestructive tissue analysis for ex vivo and in vivo cancer diagnosis using a handheld mass spectrometry system. Sci Transl Med. 2017;9(406).  https://doi.org/10.1126/scitranslmed.aan3968.
  30. 30.
    Gao L, Song Q, Patterson GE, Cooks RG, Ouyang Z. Handheld rectilinear ion trap mass spectrometer. Anal Chem. 2006;78(17):5994–6002.  https://doi.org/10.1021/ac061144k.CrossRefGoogle Scholar
  31. 31.
    Gao L, Sugiarto A, Harper JD, Cooks RG, Ouyang Z. Design and characterization of a multisource hand-held tandem mass spectrometer. Anal Chem. 2008;80(19):7198–205.  https://doi.org/10.1021/ac801275x.CrossRefGoogle Scholar
  32. 32.
    Ouyang Z, Cooks RG. Miniature mass spectrometers. Annu Rev Anal Chem. 2009;2:187–214.  https://doi.org/10.1146/annurev-anchem-060908-155229.CrossRefGoogle Scholar
  33. 33.
    Li L, Chen TC, Ren Y, Hendricks PI, Cooks RG, Ouyang Z. Mini 12, miniature mass spectrometer for clinical and other applications--introduction and characterization. Anal Chem. 2014;86(6):2909–16.  https://doi.org/10.1021/ac403766c.CrossRefGoogle Scholar
  34. 34.
    Hendricks PI, Dalgleish JK, Shelley JT, Kirleis MA, McNicholas MT, Li L, et al. Autonomous in situ analysis and real-time chemical detection using a backpack miniature mass spectrometer: concept, instrumentation development, and performance. Anal Chem. 2014;86(6):2900–8.  https://doi.org/10.1021/ac403765x. CrossRefGoogle Scholar
  35. 35.
    Pu F, Zhang W, Bateman KP, Liu Y, Helmy R, Ouyang Z. Using miniature MS system with automatic blood sampler for preclinical pharmacokinetics study. Bioanalysis. 2017;9(21):1633–41.  https://doi.org/10.4155/bio-2017-0160.CrossRefGoogle Scholar
  36. 36.
    Alfaro CM, Pirro V, Keating MF, Hattab EM, Cooks RG, Cohen-Gadol AA. Intraoperative assessment of isocitrate dehydrogenase mutation status in human gliomas using desorption electrospray ionization-mass spectrometry. J Neurosurg. 2019:1–8.  https://doi.org/10.3171/2018.8.JNS181207.
  37. 37.
    Espy RD, Teunissen SF, Manicke NE, Ren Y, Ouyang Z, van Asten A, et al. Paper spray and extraction spray mass spectrometry for the direct and simultaneous quantification of eight drugs of abuse in whole blood. Anal Chem. 2014;86(15):7712–8.  https://doi.org/10.1021/ac5016408. CrossRefGoogle Scholar
  38. 38.
    Ren Y, Liu J, Li L, McLuckey MN, Ouyang Z. Direct mass spectrometry analysis of untreated samples of ultralow amounts using extraction nano-electrospray. Anal Methods. 2013;5(23).  https://doi.org/10.1039/C3AY41149D.
  39. 39.
    Nagashima H, Tanaka K, Sasayama T, Irino Y, Sato N, Takeuchi Y, et al. Diagnostic value of glutamate with 2-hydroxyglutarate in magnetic resonance spectroscopy for IDH1 mutant glioma. Neuro-Oncology. 2016;18(11):1559–68.  https://doi.org/10.1093/neuonc/now090. Google Scholar
  40. 40.
    Yannell KE, Smith K, Alfaro CM, Jarmusch AK, Pirro V, Cooks RG. N-Acetylaspartate and 2-hydroxyglutarate assessed in human brain tissue by mass spectrometry as neuronal markers of oncogenesis. Clin Chem. 2017;63(11):1766–7.  https://doi.org/10.1373/clinchem.2017.279364.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Fan Pu
    • 1
  • Clint M. Alfaro
    • 1
  • Valentina Pirro
    • 1
  • Zhuoer Xie
    • 1
  • Zheng Ouyang
    • 1
    • 2
  • R. Graham Cooks
    • 1
    Email author
  1. 1.Department of ChemistryPurdue UniversityWest LafayetteUSA
  2. 2.Department of Precision InstrumentTsinghua UniversityBeijingChina

Personalised recommendations