Advertisement

Advanced methods for microRNA biosensing: a problem-solving perspective

  • Roberta D’AgataEmail author
  • Giuseppe Spoto
Review
  • 116 Downloads
Part of the following topical collections:
  1. Young Investigators in (Bio-)Analytical Chemistry

Abstract

MicroRNAs (miRNAs) present several features that make them more difficult to analyze than DNA and RNA. For this reason, efforts have been made in recent years to develop innovative platforms for the efficient detection of microRNAs. The aim of this review is to provide an overview of the sensing strategies able to deal with drawbacks and pitfalls related to microRNA detection. With a critical perspective of the field, we identify the main challenges to be overcome in microRNA sensing, and describe the areas where several innovative approaches are likely to come for managing those issues that put limits on improvement to the performances of the current methods. Then, in the following sections, we critically discuss the contribution of the most promising approaches based on the peculiar properties of nanomaterials or nanostructures and other hybrid strategies which are envisaged to support the adoption of these new methods useful for the detection of miRNA as biomarkers of practical clinical utility.

Graphical abstract

Keywords

MicroRNA Biosensing Surface plasmon resonance Electrochemistry Fluorescence Microfluidics 

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no competing interest.

References

  1. 1.
    Nana-Sinkam SP, Croce CM. Clinical applications for microRNAs in cancer. Clin Pharmacol Ther. 2013;93:98–104.CrossRefPubMedGoogle Scholar
  2. 2.
    Van Kouwenhove M, Kedde M, Agami R. MicroRNA regulation by RNA-binding proteins and its implications for cancer. Nat Rev Canc. 2011;11:644–56.CrossRefGoogle Scholar
  3. 3.
    Kosaka N, Iguchi H, Ochiya T. Circulating microRNA in body fluid: a new potential biomarker for cancer diagnosis and prognosis. Cancer Sci. 2010;101:2087–92.CrossRefPubMedGoogle Scholar
  4. 4.
    Pritchard CC, Cheng HH, Tewari M. MicroRNA profiling: approaches and considerations. Nat Rev Genet. 2012;13:358–69.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Liang Y, Ridzon D, Wong L, Chen C. Characterization of microRNA expression profiles in normal human tissues. BMC Genomics. 2007;8:166.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Weber JA, Baxter DH, Zhang S, Huang DY, Huang KH, Lee MJ, et al. The microRNA spectrum in 12 body fluids. Clin Chem. 2010;56:1733–41.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Cheng Y, Dong L, Zhang J, Zhao Y, Li Z. Recent advances in microRNA detection. Analyst. 2018;143:1758–74.CrossRefPubMedGoogle Scholar
  8. 8.
    Kalogianni DP, Kalligosfy PM, Kyriakou IK, Christopoulos TK. Advances in microRNA analysis. Anal Bioanal Chem. 2018;410:695–713.CrossRefPubMedGoogle Scholar
  9. 9.
    Kilic T, Erdem A, Ozsoz M, Carrara S. MicroRNA biosensors: opportunities and challenges among conventional and commercially available techniques. Biosens Bioelectron. 2018;99:525–46.CrossRefPubMedGoogle Scholar
  10. 10.
    Bartel DP. MicroRNAs: target recognition and regulatory functions. Cell. 2009;136:215–33.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Benes V, Castoldi M. Expression profiling of microRNA using real-time quantitative PCR, how to use it and what is available. Methods. 2010;50:244–9.CrossRefPubMedGoogle Scholar
  12. 12.
    Chen C, Ridzon DA, Broomer AJ, Zhou Z, Lee DH, Nguyen JT, et al. Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Res. 2005;33:e179.1–9.Google Scholar
  13. 13.
    Thomson JM, Parker J, Perou CM, Hammond SM. A custom microarray platform for analysis of microRNA gene expression. Nat Methods. 2004;1:47–53.CrossRefPubMedGoogle Scholar
  14. 14.
    Li W, Ruan K. MicroRNA detection by microarray. Anal Bioanal Chem. 2009;394:1117–24.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Qavi AJ, Kindt JT, Bailey RC. Sizing up the future of microRNA analysis. Anal Bioanal Chem. 2010;98:2535–49.CrossRefGoogle Scholar
  16. 16.
    Chugh P, Dittmer DP. Potential pitfalls in microRNA profiling. Wiley Interdiscip Rev RNA. 2012;3:601–16.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Syedmoradi L, Daneshpour M, Alvandipour M, Gomez FA, Hajghassem H, Omidfar K. Point of care testing: the impact of nanotechnology. Biosens Bioelectron. 2017;87:373–87.CrossRefPubMedGoogle Scholar
  18. 18.
    Degliangeli F, Pompa PP, Fiammengo R. Nanotechnology-based strategies for the detection and quantification of microRNA. Chem Eur J. 2014;20:9476–92.CrossRefPubMedGoogle Scholar
  19. 19.
    Jamali AA, Pourhassan-Moghaddam M, Dolatabadi JEN, Omidi Y. Nanomaterials on the road to microRNA detection with optical and electrochemical nanobiosensors. Trend Anal Chem. 2014;55:24–42.CrossRefGoogle Scholar
  20. 20.
    Chen YX, Huang KJ, Niu KX. Recent advances in signal amplification strategy based on oligonucleotide and nanomaterials for microRNA detection—a review. Biosens Bioelectron. 2018;99:612–24.CrossRefPubMedGoogle Scholar
  21. 21.
    Zanoli LM, D’Agata R, Spoto G. Functionalized gold nanoparticles for ultrasensitive DNA detection. Anal Bioanal Chem. 2012;402:1759–71.CrossRefPubMedGoogle Scholar
  22. 22.
    D’Agata R, Corradini R, Ferretti C, Zanoli L, Gatti M, Marchelli R, et al. Ultrasensitive detection of non-amplified genomic DNA by nanoparticle-enhanced surface plasmon resonance imaging. Biosens Bioelectron. 2010;25:2095–100.CrossRefPubMedGoogle Scholar
  23. 23.
    D’Agata R, Breveglieri G, Zanoli LM, Borgatti M, Spoto G, Gambari R. Direct detection of point mutations in nonamplified human genomic DNA. Anal Chem. 2011;83:8711–7.CrossRefPubMedGoogle Scholar
  24. 24.
    Johnson BN, Mutharasan R. Sample preparation-free, real-time detection of microRNA in human serum using piezoelectric cantilever biosensors at attomole level. Anal Chem. 2012;84:10426–36.CrossRefPubMedGoogle Scholar
  25. 25.
    Seo H, Kim S, Kim JI, Kang H, Jung W, Yeo WS. Ultrasensitive detection of microRNAs using nanoengineered micro gold shells and laser desorption/ionization time-of-flight MS. Anal Biochem. 2013;434:199–201.CrossRefPubMedGoogle Scholar
  26. 26.
    D’Agata R, Spoto G. Surface plasmon resonance imaging for nucleic acid detection. Anal Bioanal Chem. 2013;405:573–84.CrossRefPubMedGoogle Scholar
  27. 27.
    Spoto G, Minunni M. Surface plasmon resonance imaging: what next? J Phys Chem Lett. 2013;3:2682–91.CrossRefGoogle Scholar
  28. 28.
    Lee HJ, Wark AW, Corn RM. Enhanced bioaffinity sensing using surface plasmons, surface enzyme reactions, nanoparticles and diffraction gratings. Analyst. 2008;133:596–601.CrossRefPubMedGoogle Scholar
  29. 29.
    Sipova H, Zhang S, Dudley AM, Galas D, Wang K, Homola J. Surface plasmon resonance biosensor for rapid label-free detection of microribonucleic acid at subfemtomole level. Anal Chem. 2010;82:10110–5.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Zhang D, Yan Y, Cheng W, Zhang W, Li Y, Ju H, et al. Streptavidin-enhanced surface plasmon resonance biosensor for highly sensitive and specific detection of microRNA. Microchim Acta. 2013;180:397–403.CrossRefGoogle Scholar
  31. 31.
    Qian S, Lin M, Ji W, Yuan H, Zhang Y, Jing Z, et al. Boronic acid functionalized Au nanoparticles for selective microRNA signal amplification in fiber-optic surface plasmon resonance sensing system. ACS Sens. 2018;3:929–35.CrossRefPubMedGoogle Scholar
  32. 32.
    Cialla-May D, Zheng XS, Weber K, Popp J. Recent progress in surface-enhanced Raman spectroscopy for biological and biomedical applications: from cells to clinics. Chem Soc Rev. 2017;46:3945–61.CrossRefPubMedGoogle Scholar
  33. 33.
    Chen Y, Chen G, Feng S, Pan J, Zheng X, Su Y, et al. Label-free serum ribonucleic acid analysis for colorectal cancer detection by surface-enhanced Raman spectroscopy and multivariate analysis. J Biomed Opt. 2012;17:067003.CrossRefPubMedGoogle Scholar
  34. 34.
    Chiado A, Novara C, Lamberti A, Geobaldo F, Giorgis F, Rivolo P. Immobilization of oligonucleotides on metal-dielectric nanostructures for miRNA detection. Anal Chem. 2016;88:9554–63.CrossRefPubMedGoogle Scholar
  35. 35.
    Guo R, Yin F, Sun Y, Mi L, Shi L, Tian Z, et al. Ultrasensitive simultaneous detection of multiplex disease-related nucleic acids using double-enhanced surface-enhanced Raman scattering nanosensors. ACS Appl Mater Interfaces. 2018;10:25770–8.CrossRefPubMedGoogle Scholar
  36. 36.
    Song CY, Yang YJ, Yang BY, Sun YZ, Zhao YP, Wang LH. An ultrasensitive SERS sensor for simultaneous detection of multiple cancer-related miRNAs. Nanoscale. 2016;8:17365–73.CrossRefPubMedGoogle Scholar
  37. 37.
    Zhou W, Tian YF, Yin BC, Ye BC. Simultaneous surface-enhanced Raman spectroscopy detection of multiplexed microRNA biomarkers. Anal Chem. 2017;89:6120–8.CrossRefPubMedGoogle Scholar
  38. 38.
    Su J, Wang D, Nörbel L, Shen J, Zhao Z, Dou Y, et al. Multicolor gold–silver nano-mushrooms as ready-to-use SERS probes for ultrasensitive and multiplex DNA/miRNA detection. Anal Chem. 2017;89:2531–8.CrossRefGoogle Scholar
  39. 39.
    Skeete Z, Cheng HW, Crew E, Lin LQ, Zhao W, Joseph P, et al. Design of functional nanoparticles and assemblies for theranostic applications. ACS Appl Mater Interfaces. 2014;6:21752–68.CrossRefPubMedGoogle Scholar
  40. 40.
    Pang Y, Wang C, Wang J, Sun Z, Xiao R, Wang S. Fe3O4@Ag magnetic nanoparticles for microRNA capture and duplex-specific nuclease signal amplification based SERS detection in cancer cells. Biosens Bioelectron. 2016;79:574–80.CrossRefPubMedGoogle Scholar
  41. 41.
    Moore TJ, Moody AS, Payne TD, Sarabia GM, Daniel AR, Sharma B. In vitro and in vivo SERS biosensing for disease diagnosis. Biosensors. 2018.  https://doi.org/10.3390/bios8020046.
  42. 42.
    Hamidi-Asl E, Palchetti I, Hasheminejad E, Mascini M. A review on the electrochemical biosensors for determination of microRNAs. Talanta. 2013;115:74–83.CrossRefPubMedGoogle Scholar
  43. 43.
    Wu X, Chai Y, Yuan R, Su H, Han J. A novel label-free electrochemical microRNA biosensor using Pd nanoparticles as enhancer and linker. Analyst. 2013;138:1060–6.CrossRefPubMedGoogle Scholar
  44. 44.
    Wang J, Yi X, Tang H, Han H, Wu M, Zhou F. Direct quantification of microRNA at low pM level in sera of glioma patients using a competitive hybridization followed by amplified voltammetric detection. Anal Chem. 2012;84:6400–6.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Gao ZQ, Yang ZC. Ultrasensitive detection of microRNA using electrocatalytic nanoparticle tags. Anal Chem. 2006;78:1470–7.CrossRefPubMedGoogle Scholar
  46. 46.
    Fan Y, Chen X, Trigg AD, Tung C, Kong J, Gao Z. Detection of microRNAs using target-guided formation of conducting polymer nanowires in nanogaps. J Am Chem Soc. 2007;129:5437–43.CrossRefPubMedGoogle Scholar
  47. 47.
    Gao Z, Peng Y. A highly sensitive and specific biosensor for ligation- and PCR-free detection of microRNAs. Biosens Bioelectron. 2011;26:3768–73.CrossRefPubMedGoogle Scholar
  48. 48.
    Peng Y, Yi G, Gao Z. A highly sensitive microRNA biosensor based on ruthenium oxide nanoparticle-initiated polymerization of aniline. Chem Commun. 2010;46:9131–3.CrossRefGoogle Scholar
  49. 49.
    D’Agata R, Corradini R, Grasso G, Marchelli R, Spoto G. Ultrasensitive detection of DNA by PNA and nanoparticle-enhanced surface plasmon resonance imaging. ChemBioChem. 2008;9:2067–70.CrossRefPubMedGoogle Scholar
  50. 50.
    Gao Z, Deng H, Shen W, Ren Y. A label-free biosensor for electrochemical detection of femtomolar microRNAs. Anal Chem. 2013;85:1624–30.CrossRefPubMedGoogle Scholar
  51. 51.
    Jolly P, Batistuti MR, Miodek A, Zhurauski P, Mulato M, Lindsay MA, et al. Highly sensitive dual mode electrochemical platform for microRNA detection. Sci Rep. 2016.  https://doi.org/10.1038/srep36719.
  52. 52.
    Labib M, Khan N, Ghobadloo SM, Cheng J, Pezacki JP, Berezovski MV. Three-mode electrochemical sensing of ultralow microRNA levels. J Am Chem Soc. 2013;135:3027–38.CrossRefPubMedGoogle Scholar
  53. 53.
    Gerasimova YV, Kolpashchikov DM. Enzyme-assisted target recycling (EATR) for nucleic acid detection. Chem Soc Rev. 2014;43:6405–38.CrossRefPubMedGoogle Scholar
  54. 54.
    Castañeda AD, Brenes NJ, Kondajji A, Crooks RM. Detection of microRNA by electrocatalytic amplification: a general approach for single-particle biosensing. J Am Chem Soc. 2017;139:7657–64.CrossRefPubMedGoogle Scholar
  55. 55.
    Zhang K, Wang K, Zhu X, Xu F, Xie M. Sensitive detection of microRNA in complex biological samples by using two stages DSN-assisted target recycling signal amplification method. Biosens Bioelectron. 2017;87:358–64.CrossRefPubMedGoogle Scholar
  56. 56.
    Yin BC, Liu YQ, Ye BC. One-step, multiplexed fluorescence detection of microRNAs based on duplex-specific nuclease signal amplification. J Am Chem Soc. 2012;134:5064–7.CrossRefPubMedGoogle Scholar
  57. 57.
    Ma F, Liu W, Zhang Q, Zhang C. Chem Commun. 2017;53:10596–9.CrossRefGoogle Scholar
  58. 58.
    Gillespie P, Ladame S, O’Hare D. Molecular methods in electrochemical microRNA detection. Analyst. 2019;144:114–29.CrossRefGoogle Scholar
  59. 59.
    Islam MN, Masud MK, Haque MH, Hossain MSA, Yamauchi Y, Nguyen NT, et al. RNA biomarkers: diagnostic and prognostic potentials and recent developments of electrochemical biosensors. Small Methods. 2017;1:1700131.CrossRefGoogle Scholar
  60. 60.
    Almlie CK, Larkey NE, Burrows SM. Fluorescent microRNA biosensors: a comparison of signal generation to quenching. Anal Methods. 2015;7:7296–310.CrossRefGoogle Scholar
  61. 61.
    Voccia D, Bettazzi F, Fratini E, Berti D, Palchetti I. Improving impedimetric nucleic acid detection by using enzyme-decorated liposomes and nanostructured screen-printed electrodes. Anal Bioanal Chem. 2016;408:7271–81.CrossRefPubMedGoogle Scholar
  62. 62.
    Voccia D, Sosnowska M, Bettazzi F, Roscigno G, Fratini E, De Franciscis V, et al. Direct determination of small RNAs using a biotinylated polythiophene impedimetric genosensor. Biosens Bioelectron. 2017;87:1012–9.CrossRefPubMedGoogle Scholar
  63. 63.
    Miao XM, Cheng ZY, Ma HY, Li ZB, Xue N, Wang P. Label-free platform for microRNA detection based on the fluorescence quenching of positively charged gold nanoparticles to silver nanoclusters. Anal Chem. 2018;90:1098–103.CrossRefGoogle Scholar
  64. 64.
    Su S, Fan J, Xue B, Yuwen L, Liu X, Pan D, et al. DNA-conjugated quantum dot nanoprobe for high-sensitivity fluorescent detection of DNA and micro-RNA. ACS Appl Mater Interfaces. 2014;6:1152–7.CrossRefPubMedGoogle Scholar
  65. 65.
    Wang Y, Howes PD, Kim E, Spicer CD, Thomas MR, Lin Y, et al. Duplex-specific nuclease-amplified detection of microRNA using compact quantum dot-DNA conjugates. ACS Appl Mater Interfaces. 2018;10:28290–300.CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Tran HV, Piro B, Reisberg S, Tran LD, Duc HT, Pham MC. Label-free and reagentless electrochemical detection of microRNAs using a conducting polymer nanostructured by carbon nanotubes: application to prostate cancer biomarker miR-141. Biosens Bioelectron. 2013;49:164–9.CrossRefPubMedGoogle Scholar
  67. 67.
    Tran HV, Piro B, Reisberg S, Duc HT, Pham MC. Antibodies directed to RNA/DNA hybrids: an electrochemical immunosensor for microRNAs detection using graphene-composite electrodes. Anal Chem. 2013;85:8469–74.CrossRefPubMedGoogle Scholar
  68. 68.
    Liao X, Wang Q, Ju H. A peptide nucleic acid-functionalized carbon nitride nanosheet as a probe for in situ monitoring of intracellular microRNA. Analyst. 2015;140:4245–52.CrossRefPubMedGoogle Scholar
  69. 69.
    Bettazzi F, Palchetti I. Photo electrochemical genosensors for the determination of nucleic acid cancer biomarkers. Cur Op Elect. 2018;12:51–9.Google Scholar
  70. 70.
    Cao H, Liu S, Tu W, Bao J, Da Z. A carbon nanotube/quantum dot based photoelectrochemical biosensing platform for the direct detection of microRNAs. Chem Commun. 2014;50:13315–8.CrossRefGoogle Scholar
  71. 71.
    Zou Q, Mao Y, Hu L, Wu Y, Ji Z. miRClassify: an advanced web server for miRNA family classification and annotation. Comput Biol Med. 2014;45:157–60.CrossRefPubMedGoogle Scholar
  72. 72.
    Muller H, Marzi MJ, Nicassio F. IsomiRage: from functional classification to differential expression of miRNA isoforms. Front Bioeng Biotechnol| J Bioinf Comput Biol. 2014;2:1–6.Google Scholar
  73. 73.
    Kamanu TKK, Radovanovic A, Archer JAC, Bajic VB. Exploration of miRNA families for hypotheses generation. Sci Rep. 2013.  https://doi.org/10.1038/srep02940.
  74. 74.
    Lin S, Gregory RI. MicroRNA biogenesis pathways in cancer. Nature Rev Cancer. 2015;15:321–33.CrossRefGoogle Scholar
  75. 75.
    Rupaimoole R, Slack FJ. MicroRNA therapeutics: towards a new era for the management of cancer and other diseases. Nature Rev Drug Discov. 2017;16:203–21.CrossRefGoogle Scholar
  76. 76.
    Yin JQ, Zhao RC, Morris KV. Profiling microRNA expression with microarrays. Trends Biotechnol. 2008;26:70–6.CrossRefPubMedGoogle Scholar
  77. 77.
    Nielsen BS. MicroRNA in situ hybridization. Methods Mol Biol. 2012;822:67–84.CrossRefPubMedGoogle Scholar
  78. 78.
    Yao B, Li Y, Huang H, Sun CH, Wang Z, Fan Y, et al. Quantitative analysis of zeptomole microRNAs based on isothermal ramification amplification. RNA. 2009;15:1787–94.CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Lin X, Zhang C, Huang Y, Zhu Z, Chen X, Yang CJ. Backbone-modified molecular beacons for highly sensitive and selective detection of microRNAs based on duplex specific nuclease signal amplification. Chem Commun. 2013;49:7243–5.CrossRefGoogle Scholar
  80. 80.
    Wang XP, Yin BC, Wang P, Ye BC. Highly sensitive detection of microRNAs based on isothermal exponential amplification-assisted generation of catalytic G-quadruplex DNAzyme. Biosens Bioelectron. 2013;42:131–5.CrossRefPubMedGoogle Scholar
  81. 81.
    Hartig JS, Grune I, Najafi-Shoushtari SH, Famulok M. Sequence-specific detection of microRNAs by signal-amplifying ribozymes. J Am Chem Soc. 2004;126:722–3.CrossRefPubMedGoogle Scholar
  82. 82.
    Castoldi M, Schmidt S, Benes V, Hentze MW, Muckenthaler MU. miChip: an array-based method for microRNA expression profiling using locked nucleic acid capture probes. Nat Protoc. 2008;3:321–9.CrossRefPubMedGoogle Scholar
  83. 83.
    Ma CB, Yeung ES, Qi SD, Han R. Highly sensitive detection of microRNA by chemiluminescence based on enzymatic polymerization. Anal Bioanal Chem. 2012;402:2217–20.CrossRefPubMedGoogle Scholar
  84. 84.
    Baker MB, Bao G, Searles CD. In vitro quantification of specific microRNA using molecular beacons. Nucleic Acids Res. 2012.  https://doi.org/10.1093/nar/gkr1016.
  85. 85.
    Baker MB, Bao G, Searles CD. The use of molecular beacons to detect and quantify microRNA. Methods Mol Biol. 2013;1039:279–87.CrossRefPubMedGoogle Scholar
  86. 86.
    D’Agata R, Spoto G. Artificial DNA and surface plasmon resonance. Artificial DNA: PNA & XNA. 2012;3:45–52.CrossRefGoogle Scholar
  87. 87.
    D’Agata R, Giuffrida MC, Spoto G. Peptide nucleic acid-based biosensors for cancer diagnosis. Molecules. 2017;11:22–33.Google Scholar
  88. 88.
    Goldman JM, Zhang LA, Manna A, Armitage BA, Ly DH, Schneider JW. High affinity γPNA sandwich hybridization assay for rapid detection of short nucleic acid targets with single mismatch discrimination. Biomacromolecules. 2013;14:2253–61.CrossRefPubMedGoogle Scholar
  89. 89.
    Alhasan AH, Kim DY, Daniel WL, Watson E, Meeks JJ, Thaxton CS, et al. Scanometric microRNA array profiling of prostate cancer markers using spherical nucleic acid-gold nanoparticle conjugates. Anal Chem. 2012;84:4153–60.CrossRefPubMedPubMedCentralGoogle Scholar
  90. 90.
    Liao T, Li X, Tong Q, Zou K, Zhang H, Tang L, et al. Ultrasensitive detection of microRNAs with morpholino-functionalized nanochannel biosensor. Anal Chem. 2017;89:5511–8.CrossRefPubMedGoogle Scholar
  91. 91.
    Neely LA, Patel S, Garver J, Gallo M, Hackett M, McLaughlin S, et al. A single-molecule method for the quantitation of microRNA gene expression. Nat Methods. 2006;3:41–6.CrossRefPubMedGoogle Scholar
  92. 92.
    Denys B, El HH, Nollet F, Verhasselt B, Philippe J. A real-time polymerase chain reaction assay for rapid, sensitive, and specific quantification of the JAK2V617F mutation using a locked nucleic acid-modified oligonucleotide. J Mol Diagn. 2010;12:512–9.CrossRefPubMedPubMedCentralGoogle Scholar
  93. 93.
    Nuovo GJ, Elton TS, Nana-Sinkam P, Volinia S, Croce CM, Schmittgen TD. A methodology for the combined in situ analyses of the precursor and mature forms of microRNAs and correlation with their putative targets. Nat Protoc. 2009;4:107–15.CrossRefPubMedPubMedCentralGoogle Scholar
  94. 94.
    De Planell-Saguer M, Rodicio MC. Detection methods for microRNAs in clinic practice. Clin Biochem. 2013;46:869–78.CrossRefPubMedGoogle Scholar
  95. 95.
    De Planell-Saguer M, Rodicio MC, Mourelatos Z. Rapid in situ codetection of noncoding RNAs and proteins in cells and formalin-fixed paraffin-embedded tissue sections without protease treatment. Nat Protoc. 2010;5:1061–73.CrossRefPubMedGoogle Scholar
  96. 96.
    Wang Y, Stanzel M, Gumbrecht W, Humenik M, Sprinzl M. Biosens Bioelectron. 2007;22:1798–806.CrossRefPubMedGoogle Scholar
  97. 97.
    Pohlmann C, Sprinzl M. Electrochemical detection of microRNAs via gap hybridization assay. Anal Chem. 2010;82:4434–40.CrossRefPubMedGoogle Scholar
  98. 98.
    Zanoli LM, Spoto G. Isothermal amplification methods for the detection of nucleic acids in microfluidic devices. Biosensors. 2012;3:18–43.CrossRefPubMedPubMedCentralGoogle Scholar
  99. 99.
    Giuffrida MC, Zanoli LM, D’Agata R, Finotti A, Gambari R, Spoto G. Isothermal circular-strand-displacement polymerization of DNA and microRNA in digital microfluidic devices. Anal Bioanal Chem. 2015;407:1533–43.CrossRefPubMedGoogle Scholar
  100. 100.
    Lu Z, Zhang L, Deng Y, Lia S, He N. Graphene oxide for rapid microRNA detection. Nanoscale. 2012;4:5840–2.CrossRefPubMedGoogle Scholar
  101. 101.
    He SJ, Song B, Li D, Zhu CF, Qi WP, Wen YQ, et al. A graphene nanoprobe for rapid, sensitive, and multicolor fluorescent DNA analysis. Adv Funct Mater. 2010;20:453–9.CrossRefGoogle Scholar
  102. 102.
    Tang ZW, Wu H, Cort JR, Buchko GW, Zhang YY, Shao YY, et al. Constraint of DNA on functionalized graphene improves its biostability and specificity. Small. 2010.  https://doi.org/10.1002/smll.201000024.
  103. 103.
    Cui L, Lin XY, Lin NH, Song YL, Zhu Z, Chen X, et al. Graphene oxide-protected DNA probes for multiplex microRNA analysis in complex biological samples based on a cyclic enzymatic amplification method. Chem Commun. 2012;48:194–6.CrossRefGoogle Scholar
  104. 104.
    Tu Y, Li W, Wu P, Zhang H, Cai C. Fluorescence quenching of graphene oxide integrating with the site-specific cleavage of the endonuclease for sensitive and selective microRNA detection. Anal Chem. 2013;85:2536–42.CrossRefPubMedGoogle Scholar
  105. 105.
    Guo Q, Bian F, Liu Y, Qu X, Hu X, Sun Q. Hybridization chain reactions on silica coated Qbeads for the colorimetric detection of multiplex microRNAs. Chem Commun. 2017;53:4954–7.CrossRefGoogle Scholar
  106. 106.
    Zhu D, Zhang L, Ma W, Lu S, Xing X. Detection of microRNA in clinical tumor samples by isothermal enzyme-free amplification and label-free graphene oxide-based SYBR green I fluorescence platform. Biosens Bioelectron. 2015;65:152–8.CrossRefPubMedGoogle Scholar
  107. 107.
    Huang RC, Chiu WJ, Li YJ, Huang CC. Detection of microRNA in tumor cells using exonuclease III and graphene oxide-regulated signal amplification. ACS Appl Mater Interfaces. 2014;6:21780–7.CrossRefPubMedGoogle Scholar
  108. 108.
    Robertson NM, Hizir MS, Balcioglu M, Wang R, Selman MY, Yumak H, et al. Discriminating a single nucleotide difference for enhanced miRNA detection using tunable graphene and oligonucleotide nanodevices. Langmuir. 2015;31:9943–52.CrossRefPubMedGoogle Scholar
  109. 109.
    Howorka S, Siwy Z. Nanopore analytics: sensing of single molecules. Chem Soc Rev. 2009;38:2360–84.CrossRefPubMedGoogle Scholar
  110. 110.
    Venkatesan BM, Bashir R. Nanopore sensors for nucleic acid analysis. Nature Nanotech. 2011;6:615–24.CrossRefGoogle Scholar
  111. 111.
    Wanunu M, Dadosh T, Ray V, Jin J, McReynolds L, Drndic M. Rapid electronic detection of probe-specific microRNAs using thin nanopore sensors. Nature Nanotech. 2010;5:807–14.CrossRefGoogle Scholar
  112. 112.
    Jin J, Cid M, Poole CB, McReynolds LA. Protein mediated miRNA detection and siRNA enrichment using p19. BioTechniques. 2010;48:xvii–xxiii.CrossRefPubMedGoogle Scholar
  113. 113.
    Zhang X, Wang Y, Fricke BL, Gu LQ. Programming nanopore ion flow for encoded multiplex microRNA detection. ACS Nano. 2014;8:3444–50.CrossRefPubMedPubMedCentralGoogle Scholar
  114. 114.
    Tian K, He Z, Wang Y, Chen SJ, Gu LQ. Designing a polycationic probe for simultaneous enrichment and detection of microRNAs in a nanopore. ACS Nano. 2013;7:3962–9.CrossRefPubMedPubMedCentralGoogle Scholar
  115. 115.
    Wang Y, Zheng D, Tan Q, Wang MX, Gu LQ. Nanopore-based detection of circulating microRNAs in lung cancer patients. Nature Nanotechnol. 2011;6:668–74.CrossRefGoogle Scholar
  116. 116.
    Lu M, Zhang Q, Deng M, Miao J, Guo Y, Gao W, et al. An analysis of human microRNA and disease associations. PLoS One. 2008.  https://doi.org/10.1371/journal.pone.0003420.
  117. 117.
    Dong HF, Gao WC, Yan F, Ji HX, Ju HX. Fluorescence resonance energy transfer between quantum dots and graphene oxide for sensing biomolecules. Anal Chem. 2010;82:5511–7.CrossRefPubMedGoogle Scholar
  118. 118.
    Ryoo SR, Lee J, Yeo J, Na HK, Kim YK, Jang H, et al. Quantitative and multiplexed microRNA sensing in living cells based on peptide nucleic acid and nano graphene oxide (PANGO). ACS Nano. 2013;7:5882–91.CrossRefPubMedGoogle Scholar
  119. 119.
    Zhu X, Zheng HY, Wei XF, Lin ZY, Guo LH, Qiu B, et al. Metal–organic framework (MOF): a novel sensing platform for biomolecules. Chem Commun. 2013;49:1276–8.CrossRefGoogle Scholar
  120. 120.
    Wu Y, Han J, Xue P, Xu R, Kang Y. Nano metal–organic framework (NMOF)-based strategies for multiplexed microRNA detection in solution and living cancer cells. Nanoscale. 2015;7:1753–9.CrossRefPubMedGoogle Scholar
  121. 121.
    Dong H, Zhang J, Ju H, Lu H, Wang S, Jin S, et al. Highly sensitive multiple microRNA detection based on fluorescence quenching of graphene oxide and isothermal strand-displacement polymerase reaction. Anal Chem. 2012;15:4587–93.CrossRefGoogle Scholar
  122. 122.
    Zhu W, Su X, Gao X, Dai Z, Zou X. A label-free and PCR-free electrochemical assay for multiplexed microRNA profiles by ligase chain reaction coupling with quantum dots barcodes. Biosens Bioelectron. 2014;53:414–9.CrossRefPubMedGoogle Scholar
  123. 123.
    Qiu Z, Hildebrandt N. Rapid and multiplexed microRNA diagnostic assay using quantum dot-based Förster resonance energy transfer. ACS Nano. 2015;9:8449–57.CrossRefPubMedGoogle Scholar
  124. 124.
    Jin Z, Geissler D, Qiu X, Wegner KD, Hildebrandt N. A rapid, amplification-free, and sensitive diagnostic assay for single-step multiplexed fluorescence detection of microRNA. Angew Chem Int Ed. 2015;54:10024–9.CrossRefGoogle Scholar
  125. 125.
    Bendall SC, Nolan GP, Roederer M, Chattopadhyay PK. A deep profiler’s guide to cytometry. Trends Immunol. 2012;33:323–32.CrossRefPubMedPubMedCentralGoogle Scholar
  126. 126.
    Liu Z, Li X, Xiao G, Chen B, He M, Hu B. Application of inductively coupled plasma mass spectrometry in the quantitative analysis of biomolecules with exogenous tags: a review. Trends in Anal Chem. 2017;93:78–101.CrossRefGoogle Scholar
  127. 127.
    Qiu X, Zhang H, Yu H, Jiang T, Luo Y. Duplex-specific nuclease-mediated bioanalysis. Trends Biotechnol. 2015;3:180–8.CrossRefGoogle Scholar
  128. 128.
    Zhang S, Liu R, Xing Z, Zhang S, Zhang X. Multiplex miRNA assay using lanthanide-tagged probes and the duplex-specific nuclease amplification strategy. Chem Commun. 2016;52:14310–3.CrossRefGoogle Scholar
  129. 129.
    Qavi AJ, Bailey RC. Multiplexed detection and label-free quantitation of microRNAs using arrays of silicon photonic microring resonators. Angew Chem Int Ed. 2010;49:4608–11.CrossRefGoogle Scholar
  130. 130.
    Qavi AJ, Kindt JT, Gleeson MA, Bailey RC. Anti-DNA:RNA antibodies and silicon photonic microring resonator arrays enable the ultrasensitive, multiplexed detection of microRNAs. Anal Chem. 2011;83:5949–56.CrossRefPubMedPubMedCentralGoogle Scholar
  131. 131.
    Hu F, Xu J, Chen Y. Surface plasmon resonance imaging detection of sub-femtomolar microRNA. Anal Chem. 2017;89:10071–7.CrossRefPubMedGoogle Scholar
  132. 132.
    Sguassero A, Artiga Á, Morasso C, Jimenez RR, Rapún RM, Mancuso R, et al. A simple and universal enzyme-free approach for the detection of multiple microRNAs using a single nanostructured enhancer of surface plasmon resonance imaging. Anal Bioanal Chem. 2018.  https://doi.org/10.1007/s00216-018-1331-0.
  133. 133.
    Wegman DW, Krylov SN. Direct quantitative analysis of multiple miRNAs (DQAMmiR). Angew Chem Int Ed. 2011;50:10335–9.CrossRefGoogle Scholar
  134. 134.
    Yang TH, Ou DL, Hsu C, Huang SH, Chang PL. Comparative microRNA detection from precursor-microRNA-transfected hepatocellular carcinoma cells by capillary electrophoresis with dual-color laser-induced fluorescence. Electrophoresis. 2012;33:2769–76.CrossRefPubMedGoogle Scholar
  135. 135.
    Bang E, Chae DK, Song EJ. Simultaneous detection of multiple microRNAs for expression profiles of microRNAs in lung cancer cell lines by capillary electrophoresis with dual laser-induced fluorescence. J Chromatogr A. 2013;1315:195–9.CrossRefGoogle Scholar
  136. 136.
    Berezovski MV, Khan N. Quantitative analysis of microRNA in blood serum with protein-facilitated affinity capillary electrophoresis. Methods Mol Biol. 2013;1039:245–59.CrossRefPubMedGoogle Scholar
  137. 137.
    Na J, Shin GW, Son HG, Lee SJV, Jung GY. Multiplex quantitative analysis of microRNA expression via exponential isothermal amplification and conformation-sensitive DNA separation. Sci Rep. 2017;7:11396.CrossRefPubMedPubMedCentralGoogle Scholar
  138. 138.
    Khan N, Mironov G, Berezovski MV. Direct detection of endogenous MicroRNAs and their post-transcriptional modifications in cancer serum by capillary electrophoresis-mass spectrometry. Anal Bioanal Chem. 2016;408:2891–9.CrossRefPubMedGoogle Scholar
  139. 139.
    Ghasemi F, Wegman DW, Kanoatov M, Yang BB, Liu SK, Yousef GM, et al. Improvements to direct quantitative analysis of multiple microRNAs facilitating faster analysis. Anal Chem. 2013;85:10062–6.CrossRefPubMedGoogle Scholar
  140. 140.
    Wegman DW, Cherney LT, Yousef GM, Krylov SN. Universal drag tag for direct quantitative analysis of multiple microRNAs. Anal Chem. 2013;85:6518–23.CrossRefPubMedGoogle Scholar
  141. 141.
    Dodgson BJ, Mazouchi A, Wegman DW, Gradinaru CC, Krylov SN. Detection of a thousand copies of miRNA without enrichment or modification. Anal Chem. 2012;84:5470–4.CrossRefPubMedGoogle Scholar
  142. 142.
    Anfossi S, Babayan A, Pantel K, Calin GA. Clinical utility of circulating non-coding RNAs—an update. Nat Rev Clin Oncol. 2018;15:541–63.CrossRefPubMedGoogle Scholar
  143. 143.
    Mitchell PS, Parkin RK, Kroh EM, Fritz BR, Wyman SK, Pogosova-Agadjanyan EL, et al. Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci U S A. 2008;105:10513–8.CrossRefPubMedPubMedCentralGoogle Scholar
  144. 144.
    Farina NH, Wood ME, Perrapato SD, Francklyn CS, Stein GS, Stein JL, et al. Standardizing analysis of circulating microRNA: clinical and biological relevance. J Cell Biochem. 2014;115:805–11.CrossRefPubMedPubMedCentralGoogle Scholar
  145. 145.
    Wen Y, Pei H, Shen Y, Xi J, Lin M, Lu N, et al. DNA nanostructure-based interfacial engineering for PCR-free ultrasensitive electrochemical analysis of microRNA. Sci Rep. 2012;2:867–1513.CrossRefPubMedPubMedCentralGoogle Scholar
  146. 146.
    Ren Y, Deng H, Shen W, Gao Z. A highly sensitive and selective electrochemical biosensor for direct detection of microRNAs in serum. Anal Chem. 2013;85:4784–9.CrossRefPubMedGoogle Scholar
  147. 147.
    Gau V, Wong D. Oral fluid nanosensor test (OFNASET) with advanced electrochemical-based molecular analysis platform. Ann N Y Acad Sci. 2007;1098:401–10.CrossRefPubMedGoogle Scholar
  148. 148.
    Goon IY, Lai LMH, Lim M, Amal R, Gooding JJ. ‘Dispersible electrodes’: a solution to slow response times of sensitive sensors. Chem Commun. 2010;46:8821–3.CrossRefGoogle Scholar
  149. 149.
    Tavallaie R, McCarroll J, Le Grand M, Ariotti N, Schuhmann W, Bakker E, et al. Nucleic acid hybridization on an electrically reconfigurable network of gold-coated magnetic nanoparticles enables microRNA detection in blood. Nat Nanotechnol. 2018.  https://doi.org/10.1038/s41565-018-0232-x.
  150. 150.
    Mariani S, Minunni M. Surface plasmon resonance applications in clinical analysis. Anal Bioanal Chem. 2014;406:2303–23.CrossRefPubMedGoogle Scholar
  151. 151.
    Fang S, Lee HJ, Wark AW, Corn RM. Attomole microarray detection of microRNAs by nanoparticle-amplified SPR imaging measurements of surface polyadenylation reactions. J Am Chem Soc. 2006;128:14044–6.CrossRefPubMedPubMedCentralGoogle Scholar
  152. 152.
    Breveglieri G, Bianchi N, Finotti A, Gambari R. MicroRNAs: from basic research to therapeutic applications. Minerva Biotecnologica. 2014;26:93–102.Google Scholar
  153. 153.
    Nasheri N, Cheng J, Singaravelu R, Wu P, McDermott MT, Pezack JP. An enzyme-linked assay for the rapid quantification of microRNAs based on the viral suppressor of RNA silencing protein p19. Anal Biochem. 2011;412:165–72.CrossRefPubMedGoogle Scholar
  154. 154.
    Vaisocherová H, Šípová H, Víšová I, Bocková M, Špringer T, Ermini ML, et al. Rapid and sensitive detection of multiple microRNAs in cell lysate by low-fouling surface plasmon resonance biosensor. Biosens Bioelectron. 2015;70:226–31.CrossRefPubMedGoogle Scholar
  155. 155.
    Ding X, Yan Y, Li S, Zhang Y, Cheng W, Cheng Q, et al. Surface plasmon resonance biosensor for highly sensitive detection of microRNA based on DNA super-sandwich assemblies and streptavidin signal amplification. Anal Chimica Acta. 2015;874:59–65.CrossRefGoogle Scholar
  156. 156.
    Cheng N, Xu Y, Luo Y, Zhu L, Zhang Y, Huang K, et al. Specific and relative detection of urinary microRNA signatures in bladder cancer for point-of-care diagnostics. Chem Commun. 2017;3:4222–5.CrossRefGoogle Scholar
  157. 157.
    Jia H, Li Z, Liu C, Cheng Y. Ultrasensitive detection of microRNAs by exponential isothermal amplification. Angew Chem. 2010;49:5498–501.CrossRefGoogle Scholar
  158. 158.
    Giuffrida MC, Spoto G. Integration of isothermal amplification methods in microfluidic devices: recent advances. Biosens Bioelectron. 2017;90:174–86.CrossRefPubMedGoogle Scholar
  159. 159.
    Shang L, Cheng Y, Zhao Y. Emerging droplet microfluidics. Chem Rev. 2017;117:7964–8040.CrossRefPubMedGoogle Scholar
  160. 160.
    Zhang Y, Noji H. Digital bioassays: theory, applications, and perspectives. Anal Chem. 2017;89:92–101.CrossRefPubMedGoogle Scholar
  161. 161.
    Wang P, Jing F, Li G, Wu Z, Cheng Z, Zhang J, et al. Absolute quantification of lung cancer related microRNA by droplet digital PCR. Biosens Bioelectron. 2015;74:836–42.CrossRefPubMedGoogle Scholar
  162. 162.
    Tian H, Sun Y, Liu C, Duan X, Tang W, Li Z. Precise quantitation of microRNA in a single cell with droplet digital PCR based on ligation reaction. Anal Chem. 2016;88:11384–9.CrossRefPubMedGoogle Scholar
  163. 163.
    Zhao G, Jiang T, Liu Y, Huai G, Lan C, Li G, et al. Droplet digital PCR-based circulating microRNA detection serve as a promising diagnostic method for gastric cancer. BMC Cancer. 2018.  https://doi.org/10.1186/s12885-018-4601-5.
  164. 164.
    Gasparello J, Allegretti M, Tremante E, Fabbri E, Amoreo CA, Romania P, et al. Liquid biopsy in mice bearing colorectal carcinoma xenografts: gateways regulating the levels of circulating tumor DNA (ctDNA) and miRNA (ctmiRNA). J Exp Clin Cancer Res. 2018.  https://doi.org/10.1186/s13046-018-0788-1.
  165. 165.
    Chin CD, Chin SY, Laksanasopin T, Sia SK. Low-cost microdevices for point-of-care testing. In: Issadore D, Westervelt RM, editors. Point-of-care diagnostics on a chip. Berlin: Springer; 2013. p. 3–21.CrossRefGoogle Scholar
  166. 166.
    Ishihara R, Hasegawa K, Hosokawa K, Maeda M. Multiplex microRNA detection on a power-free microfluidic chip with laminar flow-assisted dendritic amplification. Anal Sci. 2015;31:573–6.CrossRefPubMedGoogle Scholar
  167. 167.
    Tokel O, Inci F, Demirci U. Advances in plasmonic technologies for point of care applications. Chem Rev. 2014;114:5728–52.CrossRefPubMedPubMedCentralGoogle Scholar
  168. 168.
    Mousavi MZ, Chen HY, Lee KL, Lin H, Chen HH, Lin Y, et al. Urinary micro-RNA biomarker detection using capped gold nanoslit SPR in a microfluidic chip. Analyst. 2015;140:4097–104.CrossRefPubMedGoogle Scholar
  169. 169.
    Zhang K, Kang D, Ali MM, Liu L, Labanieh L, Lu M, et al. Digital quantification of miRNA directly in plasma using integrated comprehensive droplet digital detection. Lab Chip. 2015;15:4217–26.CrossRefPubMedPubMedCentralGoogle Scholar
  170. 170.
    Lee H, Shapiro SJ, Chapin SC, Doyle PS. Encoded hydrogel microparticles for sensitive and multiplex microRNA detection directly from raw cell lysates. Anal Chem. 2016;88:3075–81.CrossRefPubMedGoogle Scholar
  171. 171.
    Chapin SC, Doyle PS. Ultrasensitive multiplexed microRNA quantification on encoded gel microparticles using rolling circle amplification. Anal Chem. 2011;83:7179–85.CrossRefPubMedPubMedCentralGoogle Scholar
  172. 172.
    McArdle H, Jimenez-Mateos EM, Raoof R, Carthy E, Boyle D, ElNaggar H, et al. “TORNADO”—theranostic one-step RNA detector; microfluidic disc for the direct detection of microRNA-134 in plasma and cerebrospinal fluid. Sci Rep. 2017;7:1750.CrossRefPubMedPubMedCentralGoogle Scholar
  173. 173.
    Ge S, Zhang L, Zhang Y, Lan F, Yan M, Yu J. Nanomaterials-modified cellulose paper as a platform for biosensing applications. J Nanoscale. 2017;9:4366–82.CrossRefGoogle Scholar
  174. 174.
    Mahato K, Srivastava A, Chandra P. Paper based diagnostics for personalized health care: emerging technologies and commercial aspects. Biosens Bioelectron. 2017;96:246–59.CrossRefGoogle Scholar
  175. 175.
    Yildiz UH, Alagappan P, Liedberg B. Naked eye detection of lung cancer associated miRNA by paper based biosensing platform. Anal Chem. 2013;85:820–4.CrossRefPubMedGoogle Scholar
  176. 176.
    Nelson PT, Wang WX, Wilfred BR, Tang G. Technical variables in high-throughput miRNA expression profiling: much work remains to be done. Biochim Biophys Acta. 2008;1779:758–65.CrossRefPubMedPubMedCentralGoogle Scholar
  177. 177.
    Meyer SU, Pfaff MW, Ulbrich SE. Normalization strategies for microRNA profiling experiments: a ‘normal’ way to a hidden layer of complexity? Biotechnol Lett. 2010;32:1777–88.CrossRefPubMedGoogle Scholar
  178. 178.
    Tonge DP, Gant TW. Evidence based housekeeping gene selection for microRNA-sequencing (miRNA-seq) studies. Toxicol Res. 2013;2:328–34.CrossRefGoogle Scholar
  179. 179.
    Peltier HJ, Latham GJ. Normalization of microRNA expression levels in quantitative RT-PCR assays: identification of suitable reference RNA targets in normal and cancerous human solid tissues. RNA. 2008;14:844–52.CrossRefPubMedPubMedCentralGoogle Scholar
  180. 180.
    Cheng G. Circulating miRNAs: roles in cancer diagnosis, prognosis and therapy. Adv Drug Deliv Rev. 2015;81:75–93.CrossRefPubMedGoogle Scholar
  181. 181.
    Yang MC, Ruan QG, Yang JJ, Eckenrode S, Wu S, McIndoe RA, et al. A statistical method for flagging weak spots improves normalization and ratio estimates in microarrays. Physiol Genomics. 2001;7:45–53.CrossRefPubMedGoogle Scholar
  182. 182.
    Mestdagh P, Van Vlierberghe P, De Weer A, Muth D, Westermann F, Speleman F, et al. A novel and universal method for microRNA RT-qPCR data normalization. Genome Biol. 2009;10:R64.CrossRefPubMedPubMedCentralGoogle Scholar
  183. 183.
    Bissels U, Wild S, Tomiuk S, Holste A, Hafner M, Tuschl T, et al. Absolute quantification of microRNAs by using a universal reference. RNA. 2009;12:2375–84.CrossRefGoogle Scholar
  184. 184.
    Kroh EM, Parkin RK, Mitchell PS, Tewari M. Analysis of circulating microRNA biomarkers in plasma and serum using quantitative reverse transcription-PCR (qRT-PCR). Methods. 2010;50:298–301.CrossRefPubMedPubMedCentralGoogle Scholar
  185. 185.
    D'haene B, Mestdagh P, Hellemans J, Vandesompele J. miRNA expression profiling: from reference genes to global mean normalization. Methods Mol Biol. 2012;822:261–72.CrossRefPubMedGoogle Scholar
  186. 186.
    Bustin SA, Nolan T. Pitfalls of quantitative real-time reverse-transcription polymerase chain reaction. J Biomol Tech. 2004;15:155–66.PubMedPubMedCentralGoogle Scholar
  187. 187.
    Shi R, Chiang V. Facile means for quantifying microRNA expression by real-time PCR. BioTechniques. 2005;39:519–25.CrossRefPubMedGoogle Scholar
  188. 188.
    Chen C, Ridzon DA, Broomer AJ, Zhou Z, Lee DH, Nguyen JT, et al. Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Res. 2005;33:e179.1–9.Google Scholar
  189. 189.
    Deng R, Zhang K, Li J. Isothermal amplification for microRNA detection: from the test tube to the cell. Acc Chem Res. 2017;50:1059–68.CrossRefPubMedGoogle Scholar
  190. 190.
    Zhao Y, Chen F, Li Q, Wang L, Fan C. Isothermal amplification of nucleic acids. Chem Rev. 2015;115:12491–545.CrossRefPubMedGoogle Scholar
  191. 191.
    Bellassai N, Spoto G. Biosensors for liquid biopsy: circulating nucleic acids to diagnose and treat cancer. Anal Bioanal Chem. 2016;408:7255–64.CrossRefPubMedGoogle Scholar
  192. 192.
    Alix-Panabieres C, Pantel K. Challenges in circulating tumour cell research. Nat Rev Cancer. 2014;14:623–31.CrossRefPubMedGoogle Scholar
  193. 193.
    Taylor DD, Gercel-Taylor C. Exosomes/microvesicles: mediators of cancer-associated immunosuppressive microenvironments. Semin Immunopathol. 2011;33:441–54.CrossRefPubMedGoogle Scholar
  194. 194.
    Spellman PT, Gray JW. Detecting cancer by monitoring circulating tumor DNA. Nat Med. 2014;20:474–5.CrossRefPubMedGoogle Scholar
  195. 195.
    Luna Coronell JA, Syed P, Sergelen K, Gyurján I, Weinhäusel A. The current status of cancer biomarker research using tumour-associated antigens for minimal invasive and early cancer diagnostics. J Proteome. 2012;76:102–15.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Dipartimento di Scienze ChimicheUniversità di CataniaCataniaItaly
  2. 2.Consorzio Interuniversitario “Istituto Nazionale Biostrutture e Biosistemi”, c/o Dipartimento di Scienze ChimicheUniversità di CataniaCataniaItaly

Personalised recommendations